New real-time cell imaging technology could pave way for transformational research

Live cell imaging captures or visualizes human tissue in action. Several methods have been developed to study living cells in greater detail and with less effort, helping scientists gain a better grasp of biological functions. But the sort of super-resolution required to make fundamental medical discoveries comes with a trade-off between resolution, speed and exposure to too much light using current imaging methods.

As technology and resolution improves, more and more detail can be detected showing even tiny changes to structures within the body. Now, the EU-funded HISTO-MRI project is taking that even further, developing technologies enabling non-invasive visualization of individual human cells in real time based on a radical new application for magnetic resonance imaging called high-frequency pulsed MRI.

Groundbreaking tech needed

First, project scientists need to develop new methods for producing magnet coils based on 3D printing technology. The coils need to be able to withstand very high currents at high frequencies.

Novel high-frequency, high-voltage pulsed power sources are also essential to the project’s work. In addition, new pulse sequencing and computer algorithms are needed to deal with, and analyze, the enormous amount of data collected.

The team plans to ‘visualize’ a mouse brain at the neuron level as a proof of concept. Successfully implemented, this new technology could pave the way for transformational research in the neuroscience, bioengineering, biophysics and experimental oncology fields.

The project is establishing the foundations for a new field of research – pulsed MRI in the high-frequency regime – which has the potential to radically advance MRI performance to micron resolution.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover key protein that helps cancer cells evade CAR T cell therapy