Access to soil increases mice's resistance to allergic inflammations

When mice live in cages with an added earthen floor, it increases their resistance towards allergic inflammations. Close contact with micro-organisms in the soil triggers anti-inflammatory genes in the mice and stimulates their gut microbiota. Researchers from Karolinska Institutet have performed the study, which was published in the Journal of Allergy and Clinical Immunology.

Earlier research has shown that the past decade's dramatic increase of chronic, inflammatory illnesses is due partly to a decrease in contact with natural micro-organisms. The researchers at Karolinska Institutet have now mapped the connection in more detail, by comparing mice that live in cages with an added earthen floor with those that live in clean cages with sawdust.

"Our hypothesis was that the microbes in the soil help to develop our immune system, and that it is when we lose contact with these that inflammatory diseases and allergies increase. We observed that mice with soil in their cages had an improved expression of anti-inflammatory genes and more active regulatory T-cells in the small intestine," says Noora Ottman, a researcher at the Institute of Environmental Medicine at Karolinska Institutet.

Milder inflamation with earthern floor

When the mice were subjected to allergic lung inflammation, the researchers noticed that the mice that lived with an earthen floor developed a considerably milder inflammation compared with the mice in the clean cages; something that can be explained by the fact that the higher degree of active regulatory T-cells in the mice suppresses the immune system's allergic reaction.

"Even if both groups of mice developed allergic inflammations, the mice that lived with soil in their cages were able to handle their response better," says Noora Ottman.

Allergic inflammation affects gut flora

The allergic inflammations in turn affected the composition of microbes in the intestinal tract of mice, which suggests a direct communication in both directions between the individual anatomical sections. If a change in the immune system and microbial composition occurs in one place, then the other is also affected.

The results continue to build on the realization that close contact with nature increases our physical and psychological well-being.

"By allowing more greenery into our daily environment, such as in offices, schools and homes, we could positively affect our health. We now need to look closer at the microbes we have found; several of them are not very well characterized yet, as well as the soil in which they live. Another important aspect is to examine in more detail which mechanisms the microbes use in order to calibrate the immune system and increase immune tolerance, both locally and systematically," Noora Ottman explains.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Smoking before age 15 significantly increases risk of chronic lung disease