Study uncovers four neuron types in the peripheral auditory system

Researchers at Karolinska Institutet have identified four types of neurons in the peripheral auditory system, three of which are new to science. The analysis of these cells can lead to new therapies for various kinds of hearing disorders, such as tinnitus and age-related hearing loss. The study is published in Nature Communications.

When sound reaches the inner ear, it is converted into electrical signals that are relayed to the brain via the ear's nerve cells in cochlea. Previously, most of these cells were considered to be of two types: type 1 and type 2 neurons, type 1 transmitting most of the auditory information. A new study by scientists at Karolinska Institutet shows that the type 1 cells actually comprise three very different cell types, which tallies with earlier research showing variations in the electrical properties and sonic response of type 1 cells.

Three different routes

"We now know that there are three different routes into the central auditory system, instead of just one," says François Lallemend, research group leader at the Department of Neuroscience, Karolinska Institutet, who led the study. "This makes us better placed to understand the part played by the different neurons in hearing. We've also mapped out which genes are active in the individual cell types."

The team conducted their study on mice using the relatively new technique of single-cell RNA sequencing. The result is a catalogue of the genes expressed in the nerve cells, which can give scientists a solid foundation for better understanding the auditory system as well as for devising new therapies and drugs.

"Our study can open the way for the development of genetic tools that can be used for new treatments for different kinds of hearing disorders, such as tinnitus," says Dr Lallemend. "Our mapping can also give rise to different ways of influencing the function of individual nerve cells in the body."

Crucial function

The study shows that these three neuron types probably play a part in the decoding of sonic intensity (i.e. volume), a function that is crucial during conversations in a loud environment, which rely on the ability to filter out the background noise. This property is also important in different forms of hearing disorders, such as tinnitus or hyperacusis (oversensitivity to sound).

"Once we know which neurons cause hyperacusis we'll be able to start investigating new therapies to protect or repair them," explains Dr Lallemend. "The next step is to show what effect these individual nerve cells have on the auditory system, which can lead to the development of better auditory aids such as cochlear implants."

The researchers have also shown through comparative studies on adult mice that these different types of neurons are already present at birth.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Epigenomic dynamics shape human brain development and neuropsychiatric disorder risks