Neuroscientists identify circuit for brain's statistical inference about motion

As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched birds before.

A team of Duke University neuroscientists has found the neural wiring underlying this predictive behavior and watched in monkeys as the circuit is set to predict a given speed. They say the neurons of the brain's sensory and motor systems are guided by a combination of past experience and sensory inputs.

When replicated in a neural network computer, these educated guesses made by motor neurons mimic Bayesian statistical inference, said Stephen Lisberger, the senior author on the paper and George Barth Geller Professor for Research in Neurobiology at Duke. Bayesian inference relies on the probability of a given outcome and updates it as more evidence becomes available.

The researchers built a mathematical model of the circuit that pitted prior experiences against a form of sensory input and adjusted the weight of its connections accordingly, just as the real life version does in its synapses.

"The model behaves just like the neurons," Lisberger said. The team was able to render the neural responses as a series of equations that fit with Bayesian logic.

The work appears Sept. 17 in Nature Neuroscience.

"Motor control is guided by this reliability coded information," Lisberger said. The memory of past experience is established by the strength of the synapses in the neural circuit that drives what are known as pursuit eye movements, and those synapses can be rapidly modified as experiences change. The heart of the system is an area of the brain that governs smooth eye movements in the frontal eye fields, FEFsem, for short.

Many papers in neuroscience over the last few years have showed the brain's capacity to use inference and predictions based on past experience to temper its use of its sensory inputs. "To our knowledge this is the first time anyone has a found a place perfectly situated to cause the behavioral outputs we see," said Lisberger, who is also a member of the Duke Institute for Brain Sciences.

The entire pursuit eye movement circuit, from the retina to the brain and back out to the eye muscles, is known to the researchers and they can measure any single neuron within it. They recorded the activity of single neurons as monkeys tracked moving targets and adapted their pursuit eye movements to changing speeds.

The team's experiments also showed that when a visual target is made less visually distinct by lowering its contrast or brightness, the importance of estimates based on past experience becomes greater. "It's like when you're driving a familiar road at night or in the fog -- you go by what you know is going to happen next as much as by what you can actually see," Lisberger said.

"In low light, FEFsem says, 'don't track that,'" Lisberger said. "But if it's a bright patch, it says 'tune in, get it.'" This insight would enable them to predict eye movements by looking at just the neurons, he said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Small brain-penetrating molecule offers hope for treating aggressive brain tumors