New study points to potential cure for addiction

The Akay Lab biomedical research team at the University of Houston is reporting in the journal Nature Scientific Reports that a possible cure for addiction may be found by following the pathways of significantly altered dopamine neurons in newborns who were chronically exposed to nicotine in utero. The findings of the altered neurons come from recordings of dopamine and non-dopamine neurons in the brain's addiction center, called the ventral tegmental area (VTA), following chronic nicotine exposure during pregnancy.

Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, and his research team noted that the dopamine neurons, in response to nicotine exposure during pregnancy, were significantly activated, allowing the release of unusually high levels of dopamine in the prefrontal cortex.

Active dopamine, known as the "feel good" hormone, might seem a good thing at first glance. It's a neurotransmitter that carries information between neurons and regulates emotional responses. It allows us to see rewards and encourages action that will lead to reward, but since it contributes to those feelings of pleasure and reward, it also plays a part in addiction.

"The impacted dopamine can result in babies being born addicted to nicotine, but once we understand which genes are altered, which gene regulator networks are altered and which gene pathways are altered, we can develop targeted medication that could eliminate addiction in offspring," said Akay.

Exposure to nicotine during pregnancy through maternal smoking or nicotine replacement therapy is associated with adverse birth outcomes as well as several cognitive and neurobehavioral deficits.

The Akay lab previously published work indicating that dopamine neurons in the VTA are very likely involved in nicotine addiction. Their current work speaks to the very nature of health itself, exploring how the dopamine of nicotine-exposed offspring alters gene expression, a fundamental building block of health. Many diseases are caused by a change in the DNA of a single gene.

Akay's team includes Renee F. Keller, Tina Kazemi, Andrei Dragomir and Yasemin M. Akay, assistant professor of biomedical engineering.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Do long genes hold the key to understanding the genetic underpinnings of aging?