Researchers uncover biochemical pathway that may help identify drugs to treat Alzheimer's

Researchers have uncovered an enzyme and a biochemical pathway they believe may lead to the identification of drugs that could inhibit the production of beta-amyloid protein, the toxic initiator of Alzheimer's disease.

AD is characterized by the accumulation of beta-amyloid plaques, tau fibers and the loss of neurons in the brain. Currently, no FDA-approved drugs exist that attack the cause of disease.

After screening more than 75,000 small molecules, researchers at Boston University School of Medicine (BUSM) and Boston University discovered a molecule that reduced the formation of amyloid beta protein in cells grown in petri dishes.

"But more importantly we discovered the target of these molecules, an enzyme and a biochemical pathway that can be inhibited in Alzheimer's to decrease amyloid production," explained corresponding author Carmela Abraham, PhD, professor of biochemistry at BUSM.

According to the researchers, the inhibitors of this pathway are also anti-cancer therapies and are another example where cancer and neurodegeneration cross paths.

The researchers are optimistic that their study will open a new avenue of research to stall or even stop the buildup of beta-amyloid protein. "We are in desperate need of drugs that can treat or even prevent Alzheimer's disease. Additional studies to improve our small molecules could lead to a disease-modifying pill for the millions who suffer from AD or those at high risk of developing the disease."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Calcium channel blockers show potential to restore cerebral blood flow in Alzheimer's disease