Artificial intelligence set to revolutionize the field of proteomics

Using artificial intelligence, researchers at the Technical University of Munich (TUM) have succeeded in making the mass analysis of proteins from any organism significantly faster than before and almost error-free. This new approach is set to provoke a considerable change in the field of proteomics, as it can be applied in both basic and clinical research.

The genome of any organism contains the blueprints for thousands of proteins which control almost all the functions of life. Defective proteins lead to serious diseases, such as cancer, diabetes or dementia. Therefore, proteins are also the most important targets for drugs.

To better understand life processes and diseases and develop more appropriate therapies, it is necessary for as many proteins as possible to be analyzed simultaneously. At present, mass spectrometry is used in order to determine the type and quantity of proteins in a biological system. However, the current methods of data analysis continue to produce many mistakes.

A team at the Technical University of Munich led by bioinformatics scientist Mathias Wilhelm and biochemist Bernhard Küster, Professor of Proteomics and Bioanalytics at the Technical University of Munich, has now succeeded in using proteomic data to train a neural network in such a way that it is able to recognize proteins much more quickly and with almost no errors.

A solution to a serious problem

Mass spectrometers do not measure proteins directly. They analyze smaller parts consisting of amino acid sequences with up to 30 building blocks. The measured spectra of these chains are compared with databases in order to assign them to a specific protein. However, the evaluation software can only use part of the information that the spectra contain. Therefore, certain proteins are not recognized or are recognized incorrectly.

"This is a serious problem," explains Küster. The neural network developed by the TUM team uses all the information of the spectra for the process of identification. "We miss fewer proteins and make 100 times fewer mistakes," says Bernhard Küster.

Applicable to all organisms

"Prosit", as the researchers call the AI software, is "applicable to all organisms in the world, even if their proteomes have never been examined before," explains Mathias Wilhelm. "This enables research which was previously inconceivable."

With the help of 100 million mass spectra, the algorithm has been so extensively trained that it can be used for all common mass spectrometers without any additional training. "Our system is the global leader in this field," says Küster.

A market worth billions

Clinics, biotech companies, pharmaceutical companies and research institutes are using high-performance devices of this kind; the market is already worth billions. With "Prosit", it will be possible to develop even more powerful instruments in the future. Researchers and physicians will also be better and faster able to search for biomarkers in patients' blood or urine, or monitor therapies for their effectiveness.

The researchers also have high hopes for fundamental research.

The method can be used to track down new regulatory mechanisms in cells. We hope to gain a considerable amount of knowledge here, which, in the medium and long term, will be reflected in the treatment of diseases suffered by humans, animals and plants."

Bernhard Küster, Professor of Proteomics and Bioanalytics at the Technical University of Munich

Wilhelm also expects that "AI methods such as Prosit will soon change the field of proteomics , as they can be used in almost every area of protein research".

Source:

Technical University of Munich (TUM)

Journal reference:

Gessulat, S. et al. (2019) Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature Methods. doi.org/10.1038/s41592-019-0426-7

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research explores hidden health risks of hereditary hemochromatosis