Doctoral thesis focuses on the role of oxidative stress in Wolfram syndrome and hypothermia

In the Faculty of Medicine at the University of Tartu, the first animal testings were conducted using antioxidant peptides designed and synthesized by scientists in Tartu, which may reduce oxidative stress. Oxidative stress also develops with a rare incurable genetic disease called Wolfram syndrome and it is studied profoundly by scientists all over the world.

Doctoral candidate of the Institute of Biomedicine and Translational Medicine at the University of Tartu, Rando Porosk, explained that oxidative stress is a condition where the reactive species, such as free radicals, dominate over the antioxidant defense system, and this may cause tissue damage as a result, for example.

Oxidative stress is the cause for concern primarily for those whose organism has more reactive species or whose antioxidant defense system is weaker. Deficient defense system may also result from the scarcity of certain vitamins."

Rando Porosk, doctoral candidate of the Institute of Biomedicine and Translational Medicine at the University of Tartu

In his doctoral thesis titled "The Role of Oxidative Stress in Wolfram Syndrome 1 and Hypothermia", Porosk studied the role of oxidative stress in the case of mild hypothermia or reduced body temperature as well as rare Wolfram syndrome. The latter is caused by a wolframin gene defect which also causes diabetes insipidus, diabetes mellitus, optical nerve atrophy and neurodegenerative disorders. A person suffering from this syndrome has diabetes as well as he/she will be blind and deaf.

According to the doctoral candidate, there is knowledge of Wolfram syndrome in the case of wolframin deficiency, as intracellular endoplasmic stress, as well as oxidative stress occurs. "We described the level of oxidative stress more profoundly than ever before in the model of mice suffering from Wolfram syndrome constructed by us and showed how the antioxidant UPF peptides designed by us decrease oxidative stress in various tissues."

In Porosk's doctoral thesis, the animal model has been described better when compared with earlier ones. This animal model can now be used in further research for describing Wolfram syndrome. "Profound description of metabolism provides information for further studies on a protein with hitherto unknown biofunction which is also wolframin that causes Wolfram syndrome. This way, its biofunction can be described even more profoundly."

The mild hypothermia is used quite a lot in clinical practice for avoiding tissue damage. Right now, it is not exactly known what the protective hypothermia mechanism is about. "We showed in the research that mild hypothermia causes a stress response in various cell lines," said Porosk in conclusion.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
BMI's influence on disease pathogenesis uncovered in new research