Fatty food changes the brain to affect homeostasis and metabolism

While we all know that eating fatty food pushes up our body weight, a new study now shows it also affects the way the brain keeps track of and corrects all metabolic irregularities in the body. Soon after tucking into a high-fat, high-carb meal – as soon as three days later – the hypothalamus shows inflammation.

High-fat diets contribute to irregularities in the hypothalamus region of the brain, which regulates body weight homeostasis and metabolism. Image Credit: Wanchai / Shutterstock
High-fat diets contribute to irregularities in the hypothalamus region of the brain, which regulates body weight homeostasis and metabolism. Image Credit: Wanchai / Shutterstock

The hypothalamus is the symphony conductor of the body, a small but vital region of the brain where a lot of things come together to regulate the smooth functioning of the human organism. This early change in the health of the hypothalamus, preceding even the first outward signs of obesity, happens very fast indeed, and motivated the current research into the cell-level changes that were occurring.

The results were striking: the microglia of the brain, which are the primary immune mechanism against foreign intruders to the central nervous system, were being activated on a high-fat diet. This in turn was due to mitochondrial shifts. The mitochondria are microscopic bean-shaped organelles or tiny organ-like structures within individual cells. They drive the whole energy processing unit of the cell, breaking down sugars atom by atom to extract chemical energy from the reaction and store it for future use in all bodily processes.

However, the mitochondria in the microglia apparently shrink and begin to function differently because of a protein called uncoupling protein 2 (UCP2). Originally discovered in brown fat, which is a special type of body fat that yields more heat than white fat, UCP2 is synthesized within the hypothalamic microglia in response to a high-fat diet. Other things which promote UCP2 synthesis include thyroid hormones, catecholamine hormones like adrenaline and noradrenaline, and retinoids.

In animals on a high-fat diet, UCP2 is activated by fatty acids. This protein uncouples or unlinks the extraction of energy from food from the mitochondrial chemical conveyor belt that stores this energy in the form of ATP. In the current experiment, increased UCP2 levels cause increased ATP production and increased mitochondrial respiration.

As a result of microglial activation by UCP, certain neurons in the hypothalamus act to increase the animals on a high-fat diet to eat more and to gain weight. When the UCP2 gene was knocked out, however, animals on the same diet ate significantly less, used up more energy, and did not put on weight. Along with this, the synapses bringing in information to the hypothalamic neurons showed a rearrangement, while other neurons in the POMC area of the hypothalamus that reduce the appetite are activated. An associated change was a decreased sensitivity to leptin, which in turn promotes obesity.

Scientists think this might have been an adaptation to earlier conditions of food scarcity, allowing the animal to eat well and store up fat when fatty food was available. However, this UCP2-mediated mechanism becomes counterproductive in a situation of having constant access to high-fat food, causing microglial activation and diet-induced obesity.

Researcher Sabrino Diano wants to understand what makes people eat more or less. The current research also drives questions as to the effect of microglial activation on various neurologic diseases like Alzheimer’s disease, which is more common among obese people.

The study was published in the journal Cell Metabolism on September 5, 2019.

Journal reference:

Microglial UCP2 Mediates Inflammation and Obesity Induced by High-Fat Feeding, Jung Dae Kim, Nal Ae Yoon, Sungho Jin, Sabrina Diano, Cell Metabolism, DOI: https://doi.org/10.1016/j.cmet.2019.08.010

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2019, September 10). Fatty food changes the brain to affect homeostasis and metabolism. News-Medical. Retrieved on January 05, 2025 from https://www.news-medical.net/news/20190910/Fatty-food-changes-the-brain-to-affect-homeostasis-and-metabolism.aspx.

  • MLA

    Thomas, Liji. "Fatty food changes the brain to affect homeostasis and metabolism". News-Medical. 05 January 2025. <https://www.news-medical.net/news/20190910/Fatty-food-changes-the-brain-to-affect-homeostasis-and-metabolism.aspx>.

  • Chicago

    Thomas, Liji. "Fatty food changes the brain to affect homeostasis and metabolism". News-Medical. https://www.news-medical.net/news/20190910/Fatty-food-changes-the-brain-to-affect-homeostasis-and-metabolism.aspx. (accessed January 05, 2025).

  • Harvard

    Thomas, Liji. 2019. Fatty food changes the brain to affect homeostasis and metabolism. News-Medical, viewed 05 January 2025, https://www.news-medical.net/news/20190910/Fatty-food-changes-the-brain-to-affect-homeostasis-and-metabolism.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals how societal inequities influence brain aging and dementia