Dangerous bacteria send out warning signals when attacked by antibiotics

A bacterial infection is not just an unpleasant experience - it can also be a major health problem. Some bacteria develop resistance to otherwise effective treatment with antibiotics. Therefore, researchers are trying to develop new types of antibiotics that can fight the bacteria, and at the same time trying to make the current treatment with antibiotics more effective.

Researchers are now getting closer to this goal with a type of bacteria called Pseudomonas aeruginosa, which is notorious for infecting patients with the lung disease cystic fibrosis. In a new study, researchers found that the bacteria send out warning signals to their conspecifics when attacked by antibiotics or the viruses called bacteriophages which kill bacteria.

We can see in the laboratory that the bacteria simply swim around the 'dangerous area' with antibiotics or bacteriophages. When they receive the warning signal from their conspecifics, you can see in the microscope that they are moving in a neat circle around. It is a smart survival mechanism for the bacteria. If it turns out that the bacteria use the same evasive manoeuvre when infecting humans, it may help explain why some bacterial infections cannot be effectively treated with antibiotics."

Nina Molin Høyland-Kroghsbo, researcher, Assistant Professor at the Department of Veterinary and Animal Sciences and part of the research talent programme UCPH-Forward

One united organism

In the study, which is a collaboration between the University of Copenhagen and the University of California Irvine, researchers have studied the growth and distribution of bacteria in petri dishes. Here, they have created environments that resemble the surface of the mucous membranes where an infection can occur - as is the case with the lungs of a person with cystic fibrosis.

In this environment, researchers can see both how bacteria usually behave and how they behave when they are affected by antibiotics and bacteriophages.

'It is quite fascinating for us to see how the bacteria communicate and change behaviour in order for the entire bacterial population to survive. You can almost say that they act as one united organism', says Nina Molin Høyland-Kroghsbo.

Possibility of blocking

The Pseudomonas aeruginosa bacteria are such a big problem that they are found in the top category 'critical' in the World Health Organization's list of bacteria, where new types of antibiotics are most urgently needed. Therefore, the researchers are excited to make new discoveries about the ways in which this type of bacteria behaves and survives.

'Infections with this type of bacteria are a major problem worldwide with many hospitalizations and deaths. That is why we are really pleased to be able to contribute new knowledge that can potentially be used to fight these bacteria', says Nina Molin Høyland-Kroghsbo.

However, she emphasizes that it will still take a long time for the new knowledge to result in better treatment. The next step is to research how to affect the bacteria's communication and warning signals.

'This clears the way for the use of drugs in an attempt to prevent that the warning signal is sent out in the first place. Alternatively, you could design substances that may block the signal from being received by the other bacteria, and this could potentially make treatment with antibiotics or bacteriophage viruses more effective', concludes Nina Molin Høyland-Kroghsbo.

Source:
Journal reference:

O'Toole, G. (2019) PQS Signaling for More than a Quorum: the Collective Stress Response Protects Healthy Pseudomonas aeruginosa Populations. Journal of Bacteriology. doi.org/10.1128/JB.00568-19.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Advanced microscopy reveals how ribosomes attach to mRNA for protein synthesis