Researchers discover novel strategy to fight against liver cancer

A study conducted at the VIB-KU Leuven Center for Cancer Biology discovered that healthy liver tissue surrounding a tumor activates a defence mechanism that restrains tumor growth. Remarkably, the researchers found that hyperactivation of this mechanism above levels normally present in the liver, triggered the elimination of different types of liver tumors in mice. This discovery identifies a novel strategy to fight against liver cancer and could inspire new therapeutic approaches that mobilize normal cells to kill cancer cells. The results of the study are published in Science.

Fighting tumors

Current chemotherapies aim at killing rapidly proliferating cancer cells. However, such therapies are often only temporarily effective because cancer cells quickly evolve drug resistance. Nowadays, other approaches such as immune therapy do not target tumor cells themselves but activate the natural defense function of the immune system.

The study, led by Prof. Georg Halder (VIB-KU Leuven Center for Cancer Biology), showed that not only the immune system but also non-cancerous liver cells around liver tumors have the capacity to kill nearby tumor cells. When they experimentally activated this novel mechanism in mice with liver tumors, these mice survived significantly longer and had a drastically reduced tumor burden.

Prof. Halder says:

While the study shows that this anti-tumor mechanism exists, how exactly activated liver cells cause the elimination of cancer cells is not known, but it is obviously a highly significant question that we are currently investigating.

Unexpected genes

By studying tumor tissues from cancer patients and mouse models for liver cancer, the scientists found that the genes YAP and TAZ were activated around tumors in the liver and that this was the driving force of the anti-tumor mechanism.

This observation was surprising because YAP and TAZ are usually highly expressed in different human cancers where they drive tumor cell proliferation and survival. "The identification of anti-tumor functions in genes traditionally considered as tumor promoting genes completely changes how we think about cancer genes and their function in normal tissues," says Iván Moya, first author of the paper.

Towards new therapies

While this study showed that this anti-tumor mechanism can kill tumors and metastases in the liver, it is not yet known whether similar mechanisms can be activated in other organs. "Given the striking anti?tumor effect of YAP?activated liver cells on liver tumors, our discovery has the potential to provide ground-breaking insights into a novel strategy to fight," says Stephanie Castaldo, co-first-author.

However, while this remarkable finding identifies a completely new strategy to fight cancer in mice, this study is the first molecular characterization of this novel anti-tumor mechanism which means that more research is needed to investigate how these findings can be applied to benefit cancer patients. "Indeed, the next step is to test to what degree this mechanism also affects human cancer cells," says Laura Van den Mooter, also co-first-author.

Source:
Journal reference:

Moya, I. M. et al. (2019) Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. doi.org/10.1126/science.aaw9886

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists create blood test to enhance cancer treatment effectiveness