Study reveals multiple correlations between brain complexity and locomotion pattern in vertebrates

Researchers at the Institute of Biotechnology, University of Helsinki, have uncovered multi-level relationships between locomotion - the ways animals move - and brain architecture, using high-definition 3D models of lizard and snake brains.

The new study unveils the existence of multiple correlations between brain complexity and locomotion pattern in vertebrates, indicating that locomotion mode is a strong predictor of cerebellar size, shape, neuron organization, and gene expression levels. This demonstrates the existence of specific type of brain shared by animals with lifestyle or behavior similarities.

The cerebellum is a major component of the brain that contributes to coordination, precision, and accurate timing of movement, and the diversity of this brain region is remarkable across vertebrates."

Nicolas Di-Poï, Principal Investigator, Associate Professor at the Institute of Biotechnology, University of Helsinki

Research studies have previously shown that behavioral and ecological factors such as diet, habitat, locomotion, cognitive abilities and lifespan play an important role in driving animal brain evolution. However, comparative studies have so far largely focused on brain size measurements, and the ecological relevance of potential multi-level variations in brain morphology and architecture had remained unclear until now.

Researchers from the University of Helsinki hypothesized that in addition to expected morphological changes in limb and skeletal structures, the ways animals move from one place to another could be a strong predictor of brain complexity at various levels of biological organization, including size, shape, neuron organization and gene expression pattern.

Based on contrast-enhanced computed tomography technology and high-resolution manual segmentation, "we present here one of the first sets of high-definition 3D reconstructions of whole-brains in vertebrates", says the first author of the study, PhD candidate Simone Macrì from the University of Helsinki.

To test this hypothesis, the research group used squamate reptiles - lizards and snakes - as the main animal model because of their high levels of morphological diversity and unique behavioral features. One major challenge the group faced was to collect a representative panel of more than 100 reptile specimens with different locomotor modes, ranging from small worm-like limbless species digging and living underground to four-limbed species with facultative bipedal or flying capabilities. Such effort has involved active collaborations with museums, personal breeders and collaborators.

Source:
Journal reference:

Macrì, S., et al. (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nature Communications. doi.org/10.1038/s41467-019-13405-w.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers reveal cellular foundations of functional brain networks in humans