Super-resolution localization photoacoustic microscopy can find blocked or burst blood vessels

200 years ago, a doctor from France used a stethoscope for the first time and countless efforts to observe human body have been made since then. Up to now, the best tool that provides anatomical, functional, and molecular information of human and animal is the photoacoustic microscopy. Super-resolution localization photoacoustic microscopy which is 500 times faster than the conventional photoacoustic microscopy system is developed by the research team from POSTECH in Korea.

Professor Chulhong Kim of Creative IT Engineering from POSTECH with Jinyoung Kim, a research professor and Jongbeom Kim, a PhD student presented a fast photoacoustic microscopy system with custom-made scanning mirror in the international journal published by Nature, Light: Science and Applications. This newly developed microscopy uses a stable and commercial galvanometer scanner with a custom-made scanning mirror and can find blocked or burst blood vessels by monitoring the flow of red blood cells without using a contrast absorber.

The photoacoustic microscopy images cells, blood vessels, and tissues by inducing vibrations when the optic energy is converted to heat after an object absorbs light from the laser beam fired. The conventional photoacoustic microscopy systems using a galvanometer scanner have a narrow field of view because they do not scan photoacoustic waves but only the optical beam. The conventional photoacoustic microscopy systems using a linear motorized stage also have temporal limitation in making images.

The research team developed a new photoacoustic microscopy system with improved performances. It can scan both photoacoustic waves and optical beams simultaneously as they implemented the custom-made scanning mirror in the existing photoacoustic microscopy system. Also, it can monitor very small vessels using intrinsic red blood cells without a contrast absorber which helps the system to image blood vessels well. Furthermore, the new system is 500 times faster than that of the conventional ones. With this improvement, it can demonstrate super-resolution image by localizing photoacoustic signals and the spatial resolution is enhanced by 2.5 times.

Their research accomplishment is meaningful in many ways. Especially, this system is expected to be very promising in diagnosis and treatment of stroke and cardiovascular disease. Because it can monitor and image the blood vessels with the flow of blood cells in real time, it can also be used in vascular disease which needs urgent diagnosis and treatment. Moreover, it allows direct monitoring of hemodynamics in the microvessels. It is anticipated to be applied in various fields including hemodynamic response, contrast agent dynamics in blood vessels and transient microcirculatory abnormalities.

Professor Chulhong Kim said:

We successfully imaged microvessels in the ears, eyes, and brains of mice and a human fingertip with this new photoacoustic microscopy system. What we have developed can be a complimentary tool to the conventional brain imaging system and it can also be a promising tool for future preclinical and clinical studies."

Source:
Journal reference:

Kim, J., et al. (2019) Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light: Science & Applications. doi.org/10.1038/s41377-019-0220-4.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Key kinase involved in cell division linked to abnormal blood vessel growth in genetic disorder