Researchers develop new approach to better understand protein interaction in the body

Proteins are often called the working molecules of the human body. A typical body has more than 20,000 different types of proteins, each of which are involved in many functions essential to human life.

Now, Purdue University researchers have designed a novel approach to use deep learning to better understand how proteins interact in the body - paving the way to producing accurate structure models of protein interactions involved in various diseases and to design better drugs that specifically target protein interactions. The work is released online in Bioinformatics.

To understand molecular mechanisms of functions of protein complexes, biologists have been using experimental methods such as X-rays and microscopes, but they are time- and resource-intensive efforts."

Daisuke Kihara, professor of biological sciences and computer science, College of Science, Purdue University

Kihara leads the research team.

"Bioinformatics researchers in our lab and other institutions have been developing computational methods for modeling protein complexes. One big challenge is that a computational method usually generates thousands of models, and choosing the correct one or ranking the models can be difficult."

Kihara and his team developed a system called DOVE, DOcking decoy selection with Voxel-based deep neural nEtwork, which applies deep learning principles to virtual models of protein interactions.

DOVE scans the protein-protein interface of a model and then uses deep learning model principles to distinguish and capture structural features of correct and incorrect models.

"Our work represents a major advancement in the field of bioinformatics," said Xiao Wang, a graduate student and member of the research team. "This may be the first time researchers have successfully used deep learning and 3D features to quickly understand the effectiveness of certain protein models. Then, this information can be used in the creation of targeted drugs to block certain protein-protein interactions."

Kihara has worked with the Purdue Research Foundation Office of Technology Commercialization on some of his research and technology.

Source:
Journal reference:

Wang, X. et al. (2020) Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics. doi.org/10.1093/bioinformatics/btz870.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Expanding access to GLP-1 weight-loss drugs could save thousands of lives