Unusually large, bacteria-killing viruses discovered

Scientists have discovered hundreds of unusually large, bacteria-killing viruses with capabilities normally associated with living organisms.

The huge phages were found by scouring a large database of DNA generated from nearly 30 different environments, ranging from the guts of premature infants and pregnant women to a Tibetan hot spring, a South African bioreactor, hospital rooms, oceans, lakes and deep underground.

The phages -- short for bacteriophage because they "eat" bacteria -- are of a size and complexity considered typical of life, carry numerous genes normally found in bacteria and use these genes against their bacterial hosts.

The findings provide new insight into the constant warfare between phages and bacteria.

The study was done by scientists from the University of Melbourne and the University of California, Berkeley, who identified 351 different huge phages, all with genomes four or more times larger than the average genomes of viruses that prey on bacteria.

Among the discovery was the largest bacteriophage to date: its genome, 735,000 base-pairs long, is nearly 15 times larger than the average phage. This largest known phage genome is much larger than genomes of many bacteria.

"We are exploring Earth's microbiomes and sometimes unexpected things turn up," said Professor Jill Banfield, the senior author of the findings now published in Nature. "These viruses of bacteria are a part of biology, of replicating entities, that we know very little about."

Professor Banfield is now at Berkeley in earth and planetary science and environmental science, policy and management but did a significant portion of her work on the phages when she was in the School of Earth Sciences at the University of Melbourne.

These huge phages bridge the gap between non-living bacteriophage, on the one hand, and bacteria and Archaea (the diversity of bacteria). There definitely seems to be successful strategies of existence that are hybrids between what we think of as traditional viruses and traditional living organisms."

Professor Jill Banfield

The new findings also have implications for human disease. Viruses in general carry genes between cells, including genes that confer resistance to antibiotics. And since phages occur wherever bacteria and Archaea live, including the human gut microbiome, they can carry damaging genes into the bacteria that colonize humans.

"Some diseases are caused indirectly by phages, because phages move around genes involved in pathogenesis and antibiotic resistance," said Professor Banfield. "And the larger the genome, the larger capacity you have to move around those sorts of genes, and the higher the probability that you will be able to deliver undesirable genes to bacteria in human microbiomes."

Professor Banfield has been studying the diversity of bacteria for more than 15 years.

Source:
Journal reference:

Al-Shayeb, B., et al. (2020) Clades of huge phages from across Earth’s ecosystems. Nature. doi.org/10.1038/s41586-020-2007-4.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough research reveals how to target malignant DNA in aggressive cancers