A non-invasive method to predict intracranial pressure

The only way to accurately measure pressure inside the skull is to insert a catheter or sensor inside. However, this is invasive and techniques with less risk are desired. Intracranial pressure (ICP) needs to be correctly accounted for in a variety of medical situations including neurosurgery, neurology and emergency medicine.

Doctors at Shinshu University School of Medicine discovered a non-invasive way to predict ICP by the brain's natural resonance frequency (NRF). This is because the NRF of the brain was found to be only dependent on the ICP value. The NRF is what frequencies an object will vibrate at when a force is applied.

The NRF of the brain can be measured from the movement of the eardrum and external ear pressure waveform. The NRF of an object is based on its mass, elasticity and other factors. The NRF of the brain is dependent on brain weight, which on average is 1.4kg and the cerebral volumetric compliance, or how much give the skull has.

There are many factors that modulate the ICP value, such as the respiratory rhythm, which changes as much as 55% with inhalation and exhalation. The pressure inside the chest effects the pressure inside the vessels taking blood up to the brain which then effects the ICP.

There was a strong correlation (R =0.99999) between the ICP value and NRF of the brain, which means that ICP can be predicted from the NRF.

More data needs to be collected for high ICP values and small brain weights.

All experiments were conducted in accordance with relevant guidelines, regulations and informed consent.

Source:
Journal reference:

Goto, T., et al. (2020) Natural resonance frequency of the brain depends on only intracranial pressure: clinical research. Scientific Reports. doi.org/10.1038/s41598-020-59376-7.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Disruptions in liver and brain clocks contribute to unhealthy eating patterns