Scientists discover the 'brain's steering wheel' that controls mice’s movements

Walking is one of the most important motor skills for animals and humans. And for almost all people, being able to walk is deeply essential. In spite of this, researchers are still working to map out which signals and electrical impulses from the brain control our walking.

In a new study in mice, researchers from the Department of Neuroscience at the University of Copenhagen have come a little closer to understanding how the walking movement is controlled. They have mapped how certain neurons in the brain may be said to be the 'brain's steering wheel' because they can control whether the mouse turns right or left.

It is an important discovery because movement is fundamentally one of the most basic features controlled by the brain. At the same time, motor disorders can be very disabling. Therefore, knowledge of the basic mechanisms of the brain and the spinal cord which control our movements is important."

Ole Kiehn, Professor, Department of Neuroscience at the University of Copenhagen

The neuronal networks that are directly responsible for coordination of the walking movement are located in the spinal cord and are relatively well described.

But researchers have now found that a particular group of neurons in the brainstem, which can be identified by their expression of a particular molecular marker called Chx10, signals to the spinal cord and controls the direction.

'The control is done by simply applying the 'brake' to the walking movment on the side that the mice turn to - then the muscles will contract on the same side. In this way, the length of the steps on one side becomes short and on the other side long, making the mouse turn. Thus, the Chx10 cells constitute a motor turning system - a kind of steering wheel', explains first author of the study Jared Cregg, Postdoc at the Department of Neuroscience.

Source:
Journal reference:

Cregg, J. M, et al. (2020) Brainstem neurons that command mammalian locomotor asymmetries. Nature Neuroscience. doi.org/10.1038/s41593-020-0633-7.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover brain circuit for voluntary breathing control