Researchers confirm new therapeutic target for myelodysplastic syndrome

A research group from Kumamoto University, Japan analyzed the pathophysiology of myelodysplastic syndrome (MDS), a blood cancer that presents often in the elderly, and found the presence of the transcription factor RUNX3, thereby revealing a cancer growth function for what had been considered a tumor suppressor. Additional analyses of human MDS cells and model mice found an abnormal gene expression mechanism linked to the initiation and propagation of MDS stem cells, and confirmed RUNX3 as a new therapeutic target.

MDS is a refractory cancer that is resistant to anticancer drugs. It originates from hematopoietic stem cells and causes hematopoietic failure. Recent advances in comprehensive DNA sequencing analysis have largely revealed the major genetic mutations within MDS but much remains unknown about the mechanisms that cause it. Thus, the International Research Center for Medical Sciences (IRCMS) research group turned their focused toward the transcription factor RUNX3 and investigated its role in the development of MDS.

They first analyzed the correlation between RUNX3 expression levels in human MDS cells and life prognosis, and confirmed that patients with higher RUNX3 expression had a worse prognosis. Next, since RUNX3 expression in human MDS cells has a high frequency of mutation in TET2 gene, they created RUNX3-expressing MDS model mice deficient in the TET2 gene. RUNX3-expressing TET2-deficient MDS cells were found to suppress the expression level and function of RUNX1, a transcription factor in the same gene family as RUNX3 and is essential for normal hematopoiesis. This indicates a new mechanism of cancer development that suppresses normal functions through interactions between family genes. The researchers also found that RUNX3 cooperates with the MYC gene, a known oncogene, to grow MDS cells. Inhibition of MYC function significantly suppressed the proliferation of RUNX3-expressing cells.

Further progress in future research is expected to lead to the development of new therapeutic methods targeting the transcription factor RUNX3 in the refractory cancer myelodysplastic syndrome. Our results are also expected to be beneficial in the study of other hematological cancers where the transcription factor RUNX plays an important role such as Down's syndrome-related leukemia."

Professor Goro Sashida who lead the study

Source:
Journal reference:

Yokomizo-Nakano, T., et al. (2020) Overexpression of RUNX3 represses RUNX1 to drive transformation of myelodysplastic syndrome. Cancer Research. doi.org/10.1158/0008-5472.can-19-3167.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
StitchR technology delivers large genes for muscular dystrophy treatment