Drug resistance may be reversed using hydrogen sulphide

Antibiotic resistance in some kinds of bacteria may be reversed using hydrogen sulphide (H2S), according to a new study.

Prior to the release of the study, published in Frontiers in Microbiology this month (August), it was believed that H2S, a gas that smells of rotten eggs, served as a "universal defence mechanism" in bacteria against antibiotics.

Researchers from the Singapore-MIT Alliance for Research and Technology (SMART) tested this concept on Acinetobacter baumanii, a pathogenic bacteria that does not naturally produce H2S. A. baumanii causes infections of the blood, urinary tract and lungs, and is associated with pneumonia, meningitis and other diseases.

A 2019 report released by the UN Interagency Coordinating Group on Antimicrobial Resistance, says that, by 2050, as many as 10 million deaths may be attributable yearly to antimicrobial resistance (AMR), besides causing significant damage to economies. The report noted that AMR can drive around 24 million people into extreme poverty because treatment costs are higher.

When the researchers added H2S releasing compounds to A. baumanii, instead of triggering antibiotic resistance, the bacterium became sensitive to multiple antibiotics, even reversing acquired resistance to gentamicin — a common antibiotic used to treat various infections.

Until now, H2S was regarded as a universal bacterial defence against antibiotics. This is a very exciting discovery because we are the first to show that H2S can, in fact, improve sensitivity to antibiotics and even reverse antibiotic resistance in bacteria that do not naturally produce the agent."

Wilfried Moreira, an author of the study and principal investigator of the SMART antimicrobial resistance interdisciplinary research group

The researchers believe that similar results can be achieved in an unknown number of bacterial species that do not produce H2S. "More research is necessary as other bacteria may have alternative biochemistry and responses that affect the outcome," says Megan McBee, scientific director at SMART, adding that the study has opened up a treatment option against AMR.

"Our research has found a way to make the deadly bacteria and others like it more sensitive to antibiotics and provide a breakthrough in treating many drug-resistant infections," said Say Yong Ng, lead author of the paper and laboratory technologist at SMART.

AMR has become a serious threat to public health in the past years and, according to WHO, is a problem faced by every country. As of 2016, 490,000 people had contracted a strain of tuberculosis resistant to various drugs. Treatment of HIV and malaria has also been complicated by drug resistance.

"If findings hold true in animal models, a combination therapy of an H2S donor drug and an antibiotic could be a treatment option for these increasingly common infections that rely heavily on only a few antibiotic options," says McBee.

In a statement to SciDev.Net, the WHO press office said the UN body "recognizes that the current research being undertaken on A. baumannii and hydrogen sensitisation is supporting building of the needed evidence base. "A. baumannii is one of the critical gram-negative pathogens for which new treatment options are needed".

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Global analysis highlights antibiotic consumption trends and AMR threat