New study shows efficacy of carbon nanotube implants to restore motor functions

A new study conducted by SISSA and the University of Trieste shows the efficacy of carbon nanotube implants to restore motor functions and paves the way for a new therapeutic approach for spinal cord injuries.

Re-establishing motor skills and neuronal connectivity thanks to the implantation of carbon nanotubes in the injury site. This is the result of a new study conducted by SISSA - Scuola Internazionale Superiore di Studi Avanzati and the University of Trieste that rewards a ten years interdisciplinary collaboration.

For the first time, the researchers have used nanomaterial implants in animals with spinal injury, observing the regrowth of nerve fibres and the restoration of motor functions. The research, published in PNAS - Proceedings of the National Academy of Sciences, shows the potential of therapeutic approaches that use the mechanical and electric properties of regenerative scaffolds to treat the injured area.

"We have been studying the interaction between neurons and carbon nanotubes for 15 years. Finally, we have been able to challenge their function in vivo", say Laura Ballerini, neurophysiologist at SISSA, and Maurizio Prato, chemist at the University of Trieste, who have been investigating nerve cell growth when interfaced to smart materials, such as carbon nanotubes in the last decade, using increasingly complex systems.

"In recent years, we passed from single neurons to brain tissue explants and from single nanotubes to two-dimensional structures and, now, three dimensional ones."

We studied the effect of the carbon nanotube implant in small mammals with a disease model of incomplete spinal cord injury. We observed their motor recovery during the next six months through standard protocols for locomotor evaluation which revealed a greater recovery of motor skills when compared to non-implanted animals."

Sadaf Usmani, PhD in Neurobiology and Study Lead Author, International School for Advanced Studies

This phenomenon is associated with nerve fibre regrowth through the injury site, as shown by the magnetic resonance experiments carried out in collaboration with the Center for Cooperative Research in Biomaterials (CIC biomaGUNE). A regrowth that is certainly favored by nanotube implantation, explain Ballerini and Prato.

"Nerve fibre regeneration is promoted by the physical characteristics of nanomaterials. These implants are able to guarantee mechanical support and, at the same time, interact electrically with neurons."

"The functionality of the regenerated tissue was not taken for granted, just as the biocompatibility of the implants" continue the researchers "And yet, not only there have been no cases of rejection, but electron microscope observations and the use of specific markers have confirmed that there is no real boundary between the tissue surrounding the injury, the regenerated tissue and the nanomaterials."

These results not only confirm the possible applications of the nanomaterials in the biomedical sector but also pave the way to new therapeutic approaches which use the physical, mechanical and electrical properties in particular, of the injured zone to favor functional recovery.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research explores how omega-3 and omega-6 fatty acids may impact cancer rates