Study: New viral mutations would not impact the efficacy of Covid-19 vaccine candidates

Vaccines currently being developed for Covid-19 should not be affected by recent mutations in the virus, according to a new study involving a University of York virologist.

Most vaccines under development worldwide have been modeled on the original 'D-strain' of the virus, which were more common amongst sequences published early in the pandemic.

Since then, the virus has evolved to the globally dominant 'G-strain', which now accounts for about 85 per cent of published SARS-CoV-2 genomes.

There had been fears the G-strain, within the main protein on the surface of the virus, would negatively impact on vaccines under development. But the research by Australia's national science agency the

Commonwealth Scientific and Industrial Research Organisation (CSIRO), found no evidence the change would adversely impact the efficacy of vaccine candidates.

The study tested blood samples from ferrets given a candidate vaccine against virus strains that either possessed or lacked this mutation (known as 'D614G').

Professor Seshadri Vasan, who holds an honorary chair in Health Sciences at the University of York, is leading the Dangerous Pathogens Team at CSIRO and is senior author of the paper.

This is good news for the hundreds of vaccines in development around the world, with the majority targeting the spike protein as this binds to the ACE2 receptors in our lungs and airways, which are the entry point to infect cells.

Despite this D614G mutation to the spike protein, we confirmed through experiments and modelling that vaccine candidates are still effective.

We've also found the G-strain is unlikely to require frequent 'vaccine matching' where new vaccines need to be developed seasonally to combat the virus strains in circulation, as is the case with influenza."

Seshadri Vasan, Study Senior Author and Professor, University of York

CSIRO Chief Executive Dr Larry Marshall said the research was critically important in the race to develop a vaccine.

Dr Marshall said: "This brings the world one step closer to a safe and effective vaccine to protect people and save lives.

"Research like this, at speed, is only possible through collaboration with partners in Australia and globally. We are tackling these challenges head on and delivering solutions through world-leading science."

The study is published in npj Vaccines.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study reveals long-term brainstem damage in COVID-19 survivors using advanced MRI scans