Gut hormone found to be key regulator of new nerve cells in the adult brain

A gut hormone, ghrelin, is a key regulator of new nerve cells in the adult brain, a Swansea-led research team has discovered. It could help pave the way for new drugs to treat dementia in patients with Parkinson's Disease.

Blood-borne factors such as hormones regulate the process of brain cell formation - known as neurogenesis - and cognition in adult mammals.

The research team focused on gut hormone acyl-ghrelin (AG), which is known to promote brain cell formation. A structure change to the hormone results in two distinct forms: AG and unacylated-ghrelin (UAG).

The team, led by Dr. Jeff Davies of Swansea University Medical School, studied both AG and UAG to examine their respective influences over brain cell formation.

This research is relevant to Parkinson's as a large proportion of those with the disease experience dementia, which is linked to a loss of new nerve cells in the brain. This loss leads to a reduction in nerve cell connectivity, which plays a vital role in regulating memory function.

The team's key overall findings were:

  • the UAG form of ghrelin reduces nerve cell formation and impairs memory
  • Individuals diagnosed with Parkinson's disease dementia have a reduced AG:UAG ratio in their blood

Our work highlights the crucial role of ghrelin as a regulator of new nerve cells in the adult brain, and the damaging effect of the UAG form specifically.

This hormone represents an important target for new drug research, which could lead ultimately to better treatment for people with Parkinson's.

Our findings show that the AG:UAG ratio could also serve as a biomarker, allowing earlier identification of dementia in people with Parkinson's disease."

Dr. Jeff Davies, Lead Researcher, Swansea University Medical School

The team included collaborators from Newcastle University (UK) and Monash University (Australia). They examined the role of AG and UAG in the brain, and also compared blood collected from Parkinson's disease patients diagnosed with dementia with cognitively intact PD patients and a control group.

They found:

  • Higher levels of UAG, using both pharmacological and genetic methods, reduced hippocampal neurogenesis and brain plasticity.
  • AG helped reverse spatial memory impairments
  • UAG blocks the process of brain cell formation prompted by AG
  • The Parkinson's patients with dementia were the only one of the three patient groups examined to show a reduced AG:UAG ratio in their blood.
Source:
Journal reference:

Hornsby, A.K.E., et al. (2020) Unacylated-Ghrelin Impairs Hippocampal Neurogenesis and Memory in Mice and Is Altered in Parkinson’s Dementia in Humans. Cell Reports Medicine. doi.org/10.1016/j.xcrm.2020.100120.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers develop new approach to effectively deliver therapeutics into the brain