Study identifies potential target for treating polyploidal giant cancer cells

As researchers and medical professionals work to develop new treatments for cancer, they face a variety of challenges. One is intratumor heterogeneity -- the presence of multiple kinds of cancer cells within the same tumor. Often, these "mosaic" tumors include cells, such as polyploidal giant cancer cells, that have evolved to become aggressive and resistant to chemotherapy and radiation.

In the past, polyploidal giant cancer cells (PGCCs) have been largely ignored because studies had found that they do not undergo mitosis, which is the mechanism that is typically required for cell division. However, recent studies have found that PGCCs undergo amitotic budding -- cell division that does not occur through mitosis -- and that their cell structure enables them to spread rapidly.

A new study, published this month by a team of Brown University scientists in Proceedings of the National Academy of Sciences, sheds more light and identifies a potential target for treating these aggressive cancer cells.

Specifically, PGCCs rely on cell filaments called vimentin in order to migrate. Vimentin is found in cells throughout the body, but PGCCs were found to have a greater amount of vimentin compared to non-PGCC control cells, and their vimentin was much more evenly distributed throughout the cell.

These cells appear to play an active role in invasion and metastasis, so targeting their migratory persistence could limit their effects on cancer progression."

Michelle Dawson, study author, assistant professor of molecular pharmacology, physiology and biotechnology at Brown University

As cells replicate within a tumor, they become increasingly crowded, and neighboring cells press tightly against them. Eventually, the cells become jammed together in a solid-like mass. Vimentin provides PGCCs with a more flexible, elastic structure, which helps protect them from damage in this situation and allows them to squeeze past their neighboring cells to escape to new, less crowded areas.

Thus, when the researchers disrupted vimentin, they dramatically reduced the cells' ability to move. In addition, vimentin appears to play an important role in rearranging the nucleus of a dividing cell, so vimentin disruption could also help prevent PGCCs from forming daughter cells.

As a next step, Dawson and her colleagues hope to find a biomarker for PGCCs so that they can study these cells in human tumors.

"This study shows vimentin is overexpressed in PGCCs and is likely responsible for several of their abnormal behaviors," Dawson said. "Vimentin is a ubiquitous protein, so targeting vimentin directly may not be an answer, but drugs that target vimentin interactions may be effective in limiting the effects of these cells."

Source:
Journal reference:

Xuan, B., et al. (2020) Vimentin filaments drive migratory persistence in polyploidal cancer cells. PNAS. doi.org/10.1073/pnas.2011912117.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of stem-like CD4 T cells offers new hope for cancer immunotherapy