Researchers investigate how brain signaling gives rise to decision-making

Increasingly, biologists are turning to computational modeling to make sense of complex systems. In neuroscience, researchers are adapting the kinds of algorithms used to forecast the weather or filter spam from your email to seek insight into how the brain's neural networks process information.

New research from Cold Spring Harbor Laboratory Assistant Professor Tatiana Engel offers crucial guidance to biologists using such models.

Testing various computational models of the nervous system, she and postdoctoral researcher Mikhail Genkin have found that just because a model can make good predictions about data does not mean it reflects the underlying logic of the biological system it represents.

Relying on such models without carefully evaluating their validity could lead to wrong conclusions about how the actual system works, they say.

The work, published October 26, 2020 in Nature Machine Intelligence, concerns a type of machine learning known as flexible modeling, which gives users the freedom to explore a wide range of possibilities without formulating specific hypotheses beforehand. Engel's lab has turned to such models to investigate how signaling in the brain gives rise to decision-making.

When it comes to forecasting the weather or predicting trends in the stock market, any model that makes good predictions is valuable. But Engel says that for biologists, the goals are different:

Because we are interested in scientific interpretation and actually discover hypotheses from the data, we not only need to fit the model to the data, but we need to analyze or understand the model which we get, right? So we want to look, as I said, we want to look into model structure and the model mechanism to make inference that this is maybe how the brain works."

Mikhail Genkin, Postdoctoral Researcher, Cold Spring Harbor Laboratory

It's possible to make good predictions using wrong assumptions, Engel said, pointing to the ancient model of the solar system that accurately predicted the movements of celestial bodies while positing that those bodies revolved around the Earth, not the Sun.

So it was important to consider how well particular models of neural networks could be trusted.

By building and comparing several models of neural signaling, Engel and Genkin found that good predictive power does not necessarily indicate that a model is a good representation of real neural networks.

They found that the best models were instead those that were most consistent across multiple datasets. This approach won't necessarily work for all situations, however, and biologists may need alternative methods of evaluating their models. Most importantly, Genkin said, "We shouldn't take anything for granted. We should check every assumption we have."

Source:
Journal reference:

Genkin, M & Engel, T A (2020) Moving beyond generalization to accurate interpretation of flexible models. Nature Machine Intelligence. doi.org/10.1038/s42256-020-00242-6.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The X factor: Decoding brain aging differences between men and women