Antifungal agent Itraconazole inhibits SARS CoV-2 in vitro

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – the causative pathogen of coronavirus disease 2019 (COVID-19) – continues to spread across many parts of the world. The COVID-19 pandemic is one of the largest public health problems in recent memory. Over 54.7 million have been infected with SARS-CoV-2, and over 1.32 million have died. As of now, no effective and safe specific antiviral therapies are available against this infection. While the hunt for a vaccine that immunizes against SARS-CoV-2 is ongoing, researchers around the world are also on the lookout for repurposing other antimicrobial agents to see their potential against this novel virus in therapeutic treatments.

Itraconazole is a broad-spectrum antifungal agent that has been shown to have some in vitro activity against SARS-CoV-2 by a team of Belgian and German researchers. When tried on patients with COVID-19, it was however found to be ineffective. The study, titled "In Vitro Activity of Itraconazole Against SARS-CoV-2," has been released on bioRxiv* the preprint server, while the article undergoes peer-review.

Study: In Vitro Activity of Itraconazole Against SARS-CoV-2. Shawn Hempel / Shutterstock
Study: In Vitro Activity of Itraconazole Against SARS-CoV-2. Shawn Hempel / Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

At present, no effective and safe medicines or vaccines are available against SARS CoV-2. Global repurposing of drugs is underway, wrote the researchers. Identification of these agents could help clinical benefit to patients with COVID-19, they write. Itraconazole is an antifungal agent that has shown efficacy against animal coronaviruses. It is a member of the triazole group of broad-spectrum antifungals – acting against a wide range of fungi.

Itraconazole against coronaviruses

SARS-CoV-2 is a betacoronavirus with a single-strand, positive-sense RNA and an envelope. Itraconazole, among others, has been identified as a potential candidate. It has crossed an initial screening in an in vitro using a luciferase reporter-expressing recombinant murine betacoronavirus as well as against a feline alphacoronavirus that could lead to feline infectious peritonitis (FIP) in cats.

Itraconazole is also active against other respiratory viruses, such as influenza A and human rhinovirus, the team wrote. Against fungi, it acts by inhibiting cholesterol trafficking within the fungal cells and thus prevents replication. Similarly, it can act against viruses, the team wrote. They added that interferon priming could be an additional mechanism that allows its antiviral action.

For this study, the team studied the in vitro activity of 17-OH itraconazole in Caco-2 and VeroE6-eGFP cells infected with SARS-CoV-2. The virus samples were obtained from COVID-19 patients.

Study design

For this study, cell assays were used to check the in vitro antiviral activity of itraconazole as well as 17-OH itraconazole on clinical isolates from COVID-19 positive patients from Germany and Belgium.

Cell cultures used were:

  • Caco-2 cells (human colon carcinoma cell line). They were cultured in "Minimal Essential Medium (MEM) supplemented with 10% fetal bovine serum (FBS) with penicillin (100 IU/mL) and streptomycin (100 μg/mL) at 37°C in a 5% CO2 atmosphere."
  • VeroE6-eGFP (African green monkey kidney cell line) "cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% FBS, 0.075% sodium bicarbonate, penicillin and streptomycin (100 μg/mL) at 37°C in a 5% CO2 atmosphere."

Assessment of antiviral activity

Itraconazole and its metabolite, 17-OH Itraconazole, and remdesivir were checked for antiviral activity. The test for antiviral activity was inhibition of virus-induced cytopathogenic effect (CPE).

Viral RNA Yield Reduction:

  • Antiviral activity was assessed by using viral yield in Caco-2 cells
  • Itraconazole diluted in MEM was added to the cell culture in 4-fold dilutions ranging between 0.01 μM to 141 50 μM
  • 17-OH itraconazole  was diluted in MEM in 4-fold dilutions between 0.02 μM to 100 μM
  • Remdesivir was diluted between 0.02 μM to 100 μM.

Findings

Overall, antiviral activity was seen with Itraconazole in human Caco-2 cells (Half maximal effective dose was 2.3 μM on MTT assay). 17-OH itraconazole – the primary metabolite of Itraconazole also showed inhibition of SARS-CoV-2 activity at a half-maximal dose of 3.6 μM. Positive control Remdesivir showed inhibition at a half-maximal dose of 0.4 μM.

Authors wrote, "Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10, as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively." Positive control remdesivir or GS-441524 showed an estimated three log10 drop and more than four log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively, they wrote.

Toxicity was minimal with Itraconazole. The authors wrote, "Minimal cytotoxicity was seen in Caco-2 cells with both itraconazole (CC50 >50 μM) and 17-OH itraconazole (CC50 >100 μM). For remdesivir CC50 values >100 μM were observed in Caco-2 cells."

Conclusions and implications

Authors write that both Itraconazole and 17-OH itraconazole show "in vitro low micromolar activity against SARS-CoV-2" but was weaker than remdesivir. They did not, however, find any beneficial effect of Itraconazole on hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15). They concluded that more studies on non-hospitalized patients is needed to check for efficacy of Itraconazole against SARS-CoV-2.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Mar 30 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Ananya Mandal

Written by

Dr. Ananya Mandal

Dr. Ananya Mandal is a doctor by profession, lecturer by vocation and a medical writer by passion. She specialized in Clinical Pharmacology after her bachelor's (MBBS). For her, health communication is not just writing complicated reviews for professionals but making medical knowledge understandable and available to the general public as well.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mandal, Ananya. (2023, March 30). Antifungal agent Itraconazole inhibits SARS CoV-2 in vitro. News-Medical. Retrieved on January 15, 2025 from https://www.news-medical.net/news/20201116/Antifungal-agent-Itraconazole-inhibits-SARS-CoV-2-in-vitro.aspx.

  • MLA

    Mandal, Ananya. "Antifungal agent Itraconazole inhibits SARS CoV-2 in vitro". News-Medical. 15 January 2025. <https://www.news-medical.net/news/20201116/Antifungal-agent-Itraconazole-inhibits-SARS-CoV-2-in-vitro.aspx>.

  • Chicago

    Mandal, Ananya. "Antifungal agent Itraconazole inhibits SARS CoV-2 in vitro". News-Medical. https://www.news-medical.net/news/20201116/Antifungal-agent-Itraconazole-inhibits-SARS-CoV-2-in-vitro.aspx. (accessed January 15, 2025).

  • Harvard

    Mandal, Ananya. 2023. Antifungal agent Itraconazole inhibits SARS CoV-2 in vitro. News-Medical, viewed 15 January 2025, https://www.news-medical.net/news/20201116/Antifungal-agent-Itraconazole-inhibits-SARS-CoV-2-in-vitro.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI reveals key follicle sizes to boost IVF success