Novel strategy redirects generic antibodies to SARS-CoV-2 spike proteins

The SARS-CoV-2, the new coronavirus behind the current pandemic, infects humans by binding its surface-exposed spike proteins to ACE2 receptors exposed on the cell membranes.

Upon a vaccination or a real infection, it takes several weeks before the immunity develops antibodies that can selectively bind to these spike proteins. Such antibody-labeled viruses are neutralized by the natural killer and T cells operated by the human immunity.

An alternative approach to train the immunity response is offered by researchers at the University of Illinois Chicago and California State University at Sacramento who have developed a novel strategy that redirects antibodies for other diseases existing in humans to the spike proteins of SARS-CoV-2.

In their study published by the Journal of Physical Chemistry Letters, the team proposes using peptide-based double-faced "booster" inhibitors, with one face binding to the spike proteins of SARS-CoV-2 and the other face binding to generic hepatitis B antibodies.

Once the SARS-CoV-2 viruses become labeled by the hepatitis B antibodies via intermediate boosters, the viruses will be neutralized. This universal approach allows a dramatic shortening of the response time upon real infections, which can be critical in certain patients or conditions."

Petr Král, Study Senior Author and Professor, Chemistry, Physics, Pharmaceutical Sciences and Chemical engineering

Král and Yanxiao Han, who recently earned a Ph.D. in chemistry at UIC and is first author on the paper, believe the study could provide guidance in the preparation of generic therapeutics against emerging pathogens with the combined advantages of small-protein and antibody therapies.

"The dramatic impact which novel viruses can have on humans could be fast mitigated in the absence of their vaccination if generic antibodies present within them are temporarily retrained to recognize these viruses," the researchers wrote.

In a study published last spring, Král and Han extracted different peptides from ACE2 that interact directly with the viral spike protein.

"We investigated potential COVID-19 therapeutics using computer simulations based on the X-ray crystal structure of the receptor-binding domain of SARS-CoV-2 when it is bound to ACE2," Král said. "Similar to our latest study, identifying these kinds of inhibitors could lead to new treatments to combat the coronavirus."

Source:
Journal reference:

Han, Y., et al. (2021) Retrained Generic Antibodies Can Recognize SARS-CoV-2. Journal of Physical Chemistry Letters. doi.org/10.1021/acs.jpclett.0c03615.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough discovery could lead to novel malaria vaccines and therapies