A person's breath holds the key to monitoring fat metabolization

Your breath holds the key to monitoring fat burning, and now a research group from Tohoku University has created a compact and low-cost device that can measure how our body metabolizes fat.

The device uses an ultraviolet lamp to gauge exhaled acetone gas, which is produced in the blood through the metabolic reaction of fat.

"Precise measurements of acetone gas concentration allows us to determine the body's ability to metabolize fat and develop exercise methods for efficient fat burning," says Professor Yuji Matsuura from Tohoku University's Graduate School of Biomedical Engineering, who led the research group.

The details of their study were published in the journal Sensors on January 12, 2021

Matsuura and his team focused on ultraviolet light, which due to its extremely short wavelength is strongly absorbed by acetone gas. They succeeded in measuring the acetone concentration with high accuracy: 0.03 ppm--while the acetone concentration is about 1 ppm in exhaled air.

To do this, they trapped exhaled air in a thin tubular optical fiber--called a hollow optical fiber--that had been exposed to vacuum ultraviolet light produced from an ultraviolet lamp. The group measured the degree to which the light is weakened as a result of the absorption of acetone gases to ascertain the acetone gas concentration.

When putting the device to use the group discovered that fat burning rates gradually increased after exercise. In contrast, the rate remained constant during exercise, indicating that a substantial part of fat metabolization occurs after exercise.

Until now, a large mass spectrometer was required to monitor fat metabolization. The new device, however, comprises only three components: a lamp, a hollow optical fiber, and a small spectrometer making it compact and low cost.

The present research may also lead to non-invasive diagnosis methods for diabetes, since diabetic patients have high concentrations of acetone gas in their breath."

Yuji Matsuura, Professor, Tohoku University's Graduate School of Biomedical Engineering

Source:
Journal reference:

Kudo, Y., et al. (2021) Vacuum Ultraviolet Absorption Spectroscopy Analysis of Breath Acetone Using a Hollow Optical Fiber Gas Cell. Sensors. doi.org/10.3390/s21020478.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Antibiotic activity altered by interaction with nanoplastics, new research shows