Real-world evidence from Israel on VOCs and SARS-CoV-2 vaccine protection

A new study by Israeli researchers tested the hypothesis that certain SARS-CoV-2 variants of concern can overcome protection conferred by Pfizer-BioNTech (BNT162b2) mRNA vaccine and found evidence of increased breakthrough rates in vaccinated individuals. The research paper is currently available on the medRxiv* preprint server.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

The detrimental coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide for over a year. Consequently, mass vaccination that is currently underway on a global scale is our first ray of hope that we will soon mitigate this threat.

The Pfizer-BioNTech (BNT162b2) mRNA vaccine has demonstrated relatively high protection levels; nevertheless, there is a worry that several SARS-CoV-2 variants of concerns can overcome vaccine-generated immune defenses.

Moreover, laboratory studies have found a reduction in neutralization properties against the UK (B.1.1.7) and South African (B.1.351) variants. However, the pertinence of these assays in real-life circumstances is still unclear.

On the other hand, T-cell responses not captured by neutralization studies were shown to be relatively stable after vaccination against these variants. Hence, it remains unknown whether variants of concern can cause vaccine breakthroughs in real-world scenarios, where the vaccine gives rise to robust antibody and T-cell responses.

This is why a research group from Israel, led by Dr. Talia Kustin from Tel Aviv University, conducted a case-control study that appraised whether individuals that received Pfizer-BioNTech mRNA vaccine and had a documented SARS-CoV-2 infection were more likely to become infected with the UK and South African variants in comparison with unvaccinated individuals.

A combination of real-world and case-control approach

In this study, the researchers have identified symptomatic or asymptomatic individuals with documented SARS-CoV-2 infection among members of the Clalit Health Services, i.e., the largest health care organization in Israel. Each ‘vaccinee’ was matched with an unvaccinated control with similar demographic traits in order to reduce bias associated with differential exposure.

This was followed by RNA collection from the polymerase chain reaction (PCR) samples and performed complete viral genome sequencing. Subsequently, the paired set of vaccinated and non-vaccinated carriers has been analyzed using a stringent technique of lineage assignment for every viral sequence.

The power of such an approach emanates from the mixture of real-world evaluation and stringent case-control matching strategy, which allowed ruling out a confounding effect as a cause for a high proportion of any given variant.

Variant frequencies of SARS-CoV-2 positive samples. (A) Variant frequencies are shown across the time of the study, including the number of samples collected throughout the study. All values were calculated by averaging over a sliding window of seven days. (B) Breakdown of variant frequencies based on the four groups of this study: pie charts display the proportion of each variant (B.1.1.7, B.1.351, WT) for paired vaccinated cases versus non-vaccinated controls separated by effectiveness (full effectiveness and partial effectiveness, as defined in the main text), with cases on the left and their associated control on the right.
Variant frequencies of SARS-CoV-2 positive samples. (A) Variant frequencies are shown across the time of the study, including the number of samples collected throughout the study. All values were calculated by averaging over a sliding window of seven days. (B) Breakdown of variant frequencies based on the four groups of this study: pie charts displays the proportion of each variant (B.1.1.7, B.1.351, WT) for paired vaccinated cases versus non-vaccinated controls separated by effectiveness (full effectiveness and partial effectiveness, as defined in the main text), with cases on the left and their associated control on the right.

Variants of concern and vaccine effectiveness

In a nutshell, the results reveal an increased incidence of South African SARS-CoV-2 variant of concern in vaccine breakthrough infections in fully vaccinated individuals and an increased incidence of UK SARS-CoV-2 variant of concern in partially vaccinated ones.

More specifically, in ‘vaccinees’ infected at least one week following the second dose, there was a disproportionally higher infection rate with the South African variant. In comparison, those infected between two weeks after the first dose and one week after the second dose were disproportionally infected by the UK variant.

This suggests diminished vaccine effectiveness against both variants of concern under different timing and dosage conditions. However, the incidence of South African variant in Israel remains low to date, and vaccine effectiveness is still high against the UK strain in fully vaccinated individuals.

Lessons learned

“From a biological point of view, the breakthrough cases observed in this study might either be due to immune evasion of both strains, or the ability of B.1.17 to create higher viral loads”, say study authors in this medRxiv paper.

“Given the low frequency of B.1.351 across time, our results overall suggest that selection does not strongly favor the B.1.351 variant in the particular conditions in Israel”, they further emphasize.

Taking into account the low frequency of South African variant, the researchers suggest that vaccine effectiveness in combination with authorized non-pharmaceutical interventions may be sufficient to prevent its spread and that the UK variant may outcompete the South African one – perhaps due to its established high transmission rate.

In any case, this study underscores the significance of tracking viral variants in a meticulous framework, but also the importance of vaccination which is currently the safest and most efficacious way of preventing the ongoing spread of current (and possible future) SARS-CoV-2 variants of concern.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 8 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Tomislav Meštrović

Written by

Dr. Tomislav Meštrović

Dr. Tomislav Meštrović is a medical doctor (MD) with a Ph.D. in biomedical and health sciences, specialist in the field of clinical microbiology, and an Assistant Professor at Croatia's youngest university - University North. In addition to his interest in clinical, research and lecturing activities, his immense passion for medical writing and scientific communication goes back to his student days. He enjoys contributing back to the community. In his spare time, Tomislav is a movie buff and an avid traveler.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Meštrović, Tomislav. (2023, April 08). Real-world evidence from Israel on VOCs and SARS-CoV-2 vaccine protection. News-Medical. Retrieved on January 21, 2025 from https://www.news-medical.net/news/20210412/Real-world-evidence-from-Israel-on-VOCs-and-SARS-CoV-2-vaccine-protection.aspx.

  • MLA

    Meštrović, Tomislav. "Real-world evidence from Israel on VOCs and SARS-CoV-2 vaccine protection". News-Medical. 21 January 2025. <https://www.news-medical.net/news/20210412/Real-world-evidence-from-Israel-on-VOCs-and-SARS-CoV-2-vaccine-protection.aspx>.

  • Chicago

    Meštrović, Tomislav. "Real-world evidence from Israel on VOCs and SARS-CoV-2 vaccine protection". News-Medical. https://www.news-medical.net/news/20210412/Real-world-evidence-from-Israel-on-VOCs-and-SARS-CoV-2-vaccine-protection.aspx. (accessed January 21, 2025).

  • Harvard

    Meštrović, Tomislav. 2023. Real-world evidence from Israel on VOCs and SARS-CoV-2 vaccine protection. News-Medical, viewed 21 January 2025, https://www.news-medical.net/news/20210412/Real-world-evidence-from-Israel-on-VOCs-and-SARS-CoV-2-vaccine-protection.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Tofacitinib reduces SARS-CoV-2 infection risk in patients with PTPN2 deficiency