RNA secondary structures can contribute strongly to gene regulation, research shows

A team of scientists from Russia studied the role of double-stranded fragments of the maturing RNA and showed that the interaction between distant parts of the RNA can regulate gene expression. The research was published in Nature Communications.

At school, we learn that DNA is double-stranded and RNA is single-stranded, but that is not entirely true. Scientists have encountered many cases of RNA forming a double-stranded (a.k.a. secondary) structure that plays an important role in the functioning of RNA molecules. These structures are involved in the regulation of gene expression, where the double-stranded regions typically carry specific functions and, if lost, may cause severe disorders. A double-stranded structure is created by sticky complementary regions. For the strands to stick to each other, U and G should appear opposite A and C, respectively. The majority of the sticking regions are located close to one another, but the role of those located far apart has not been well understood.

Scientists from the Skoltech Center for Life Sciences (CLS) led by professor Dmitri Pervouchine and their colleagues from Russian and international laboratories used molecular and bioinformatics techniques to analyze the structure and roles of complementary RNA regions spaced far apart but capable of forming secondary structures. It transpired that the secondary structure plays an important role in the maturation of information-carrying RNA molecules and particularly in splicing, a process in which non-coding regions are cut out, and the coding regions are stitched together. The team showed that the RNA secondary structures can regulate splicing and thus contribute strongly to gene regulation.

This paper culminates years of research on the RNA secondary structure and its role in the regulation of gene expression. We have published an extensive computation-based catalog of potentially important RNA structures, but the experimental research in this direction is just starting.”

Dmitri Pervouchine, Professor, Skoltech Center for Life Sciences

Source:
Journal reference:

Kalmykova, S., et al. (2021) Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nature Communications. doi.org/10.1038/s41467-021-22549-7.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study challenges the traditional view of gene switches