Key mechanism behind mutant p53 aggregation process is linked to cancer pathology

Cancer has been recently shown to be affected by protein clusters, particularly by the aggregation of mutant variants of the tumor suppressor protein p53, which are present in more than half of malignant tumors. However, how the aggregates are formed is not yet fully understood. The understanding of this process is expected to provide new therapeutic tools able to prevent proteins to clump and cancer progression.

In Brazil, researchers at the Federal University of Rio de Janeiro have identified a key mechanism behind the mutant p53 aggregation process, linked to cancer pathology, opening new paths for the development of novels drugs against the disease.

The latest findings have been published in advance in the scientific journal Chemical Science, by The Royal Society of Chemistry.

Led by the Prof. Jerson Lima Silva, the research team discovered that the formation of aggregates of p53 is preceded by liquid-to-liquid phase separation, a chemical segregation of a homogenous fluid, that then progresses to phase transition, or phase changes, resulting in ether a gel-like state or a solid-like state of the protein.

Once a phase transition to a solid state is established, the aggregates of mutant p53 comparable to amyloids observed in neurodegenerative diseases are formed, thereby playing a crucial role in cancer development. This process was shown to occur in the nucleus, particular in nuclear compartments, by the use of different biophysical and fluorescence microscopy tools.

In the present study, it is shown that polyanions, such as heparin and RNA, were able to modulate the phase separation and phase transition in vitro. Heparin leads the p53 condensates into a gel-like state, whereas RNA resulted in the conversion into a solid-like state of the protein.

The new findings extend the concept of phase separation and of the amyloid-like aggregation found in neurodegenerative diseases to malignant tumors involving mutant p53.

The study also points out that the phase transitions to solid-like amorphous and amyloid-like states of mutant p53 are formidable targets for the development of novel diagnostic and therapeutic strategies against cancer.

By providing insight into the formation of p53 condensates and identifying the exact conditions that lead to the formation of aggregated structures, we can now work towards developing strategies to prevent their formation. In the end, this may lead to new therapies for treating different malignant tumors, such as breast, ovarian and prostate cancer."

Lima Silva, Project Lead Investigator, National Institute of Science and Technology of Structural Biology and Imaging

Silva's laboratory at the Federal University of Rio de Janeiro has been studying p53 mutations and aggregation for over 18 years.

Source:
Journal reference:

Petronilho, E. C., et al. (2021) Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chemical Science. doi.org/10.1039/D1SC01739J.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover key genes linked to DCIS progression