Researchers uncover new gene mutation responsible for cerebral cavernous malformation

Researchers from the Hong Kong University of Science and Technology (HKUST) and Beijing Tiantan Hospital have recently uncovered a new gene mutation responsible for the non-familial patients of cerebral cavernous malformation (CCM) - a brain vascular disorder which inflicted about 10~30 million people in the world.

While the mutation of three genes: namely CCM1, CCM2, and CCM3, were known to be a cause of CCM - they mostly targeted patients who has family history in this disorder - which only account for about 20 per cent of the total inflicted population. The cause for the remaining 80 per cent non-familial cases, however, were not known.

Now, using next-generation sequencing and computational approach, a research team led by Prof. Wang Jiguang, Assistant Professor from HKUST's Division of Life Science and Department of Chemical and Biological Engineering, in collaboration with Prof. CAO Yong from the Beijing Tiantan Hospital, analyzed the genomic data of 113 CCM patients and identified another mutation called MAP3K3 c.1323C>G, which is found to be responsible for almost all the tested cases who developed popcorn-like lesions in their brain arteries - the most common one among the four types of CCM lesions (type II CCM).

At present, magnetic resonance imaging (MRI) is a commonly used non-intrusive means that doctors can base upon for diagnosis and treatment. However, the MRI images can only tell the size and type of the lesions, but not the gene responsible for the problem - which can only be ascertained by surgery and laboratory tests. Now, the HKUST research team designed a computational method that could help assess the probability of connection between the lesion shown in the MRI image to the genetic mutation MAP3K3 c.1323C>G. So CCM patients with this gene mutation may be able to receive more targeted treatment without having to undergo surgery - which could bear serious risks including cerebral hemorrhage or new focal neurological deficits.

Our research opens a new direction to the genetic landscape of CCM and uncovers clues to the correlation between MAP3K3 c.1323C>G gene mutation and type II CCM. The design of the computational method, or decision-tree model takes us a step closer to non-invasive diagnosis of CCM cause, and we hope the discovery could help pave way for candidate drug target and therapy development, bringing benefits to patients in the near future."

Prof. Wang Jiguang, Assistant Professor, HKUST's Division of Life Science and Department of Chemical and Biological Engineering

The findings were recently published in The American Journal of Human Genetics.

Source:
Journal reference:

Weng, J., et al. (2021) Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. The American Journal of Human Genetics. doi.org/10.1016/j.ajhg.2021.04.005.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Longer waits in emergency care impact outcomes for hip fracture patients, study shows