Microgel-coated mesenchymal stromal cells can reverse pulmonary fibrosis

Researchers at the University of Illinois Chicago have shown that even after lung tissue has been damaged, it may be possible to reverse fibrosis and promote tissue repair through treatment with microgel-coated mesenchymal stromal cells.

Pulmonary fibrosis is a chronic disease caused by environmental toxins, medications or medical conditions like pneumonia and rheumatoid arthritis. It is characterized by the formation of scar tissue due to damage or an unchecked immune response, and it can cause mild to severe difficulty breathing and oxygen deprivation. Fibrosis is currently thought to be mostly irreversible, as current drug treatments are only mildly effective at managing symptoms and generally cause significant side effects.

Mesenchymal stromal cells, or MSCs, are multipotent and self-renewing, much like stem cells, and they have been studied for their potential to treat conditions like fibrosis.

While previous studies tested the therapeutic effects of MSCs - which are known to suppress inflammation and to adapt to different tissue environments - their efficacy has so far been limited to early phases of the disease, when inflammation levels are high and scar tissue is still forming. Our approach was to optimize MSC-based therapeutics to work after inflammation has been reduced, which is when most people are diagnosed with fibrosis."

Jae-Won Shin, Study Corresponding Author and Assistant Professor of Pharmacology and Bioengineering, College of Medicine, University of Illinois at Chicago

As described in a new paper published in Nature Biomedical Engineering, the UIC researchers engineered a thin microgel that, when designed in a specific way, can boost the therapeutic potential of MSCs to degrade scar tissue and regenerate healthy tissue in mouse models of fibrosis.

Shin and his colleagues engineered the microgel, which is as soft as healthy lung tissue, and incorporated a small protein called tumor necrosis factor-alpha. Also known as TNF-alpha, this protein acts as an inflammatory signal that encourages MSCs to synthesize collagenase. Collagenase is an enzyme that degrades excess collagen in fibrotic tissues and promotes the restoration of damaged tissues.

To optimize the MSCs with the microgel, the UIC researchers designed a microfluidic device to encapsulate individual cells rapidly and consistently in the thin gel.

"We miniaturized down to the small scale, the individual cell, which is important for delivery of the therapeutic into the tiny airways of the lungs," said study first author Sing-Wan Wong, a UIC postdoctoral research associate in the department of pharmacology and regenerative medicine.

In models of fibrotic injury, the UIC researchers observed reduced indicators of scaring and increased indicators of healthy lung tissue, such as normal collagen levels and architecture, only among the mice treated with MSCs coated in their TNF-alpha-incorporated gel via single cell encapsulation.

"This is really one of the first scientific demonstrations that collagen levels can be normalized well after fibrotic injury, and that the cell environment, not just the cells themselves, can be designed at the single-cell level in a precise manner," Shin said. "Our results suggest a feasible approach to predictively program cellular functions for desired therapeutic outcomes."

Source:
Journal reference:

Wong, S. W., et al. (2021) Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nature Biomedical Engineering. doi.org/10.1038/s41551-021-00740-x.

Comments

  1. Emilio Faxas Emilio Faxas United States says:

    Is microgel-coated mesenchymal stromal cells a product available for purchase?

  2. Emilio Faxas Emilio Faxas United States says:

    I'm interested in this product for my wife's pulmonary fibrosis

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gut microbiome changes linked to onset of rheumatoid arthritis among at-risk individuals