Study uncovers new drug target for myelodysplastic syndrome

Mount Sinai and UC San Diego researchers have shown for the first time how mutations affecting a cellular process called RNA splicing alter cells to develop myelodysplastic syndrome (MDS) and other hematologic malignancies and solid tumors, according to a study published in Cancer Discovery in October.

Their research found that these mutations produce an alternative version of the protein created by the gene GNAS. This protein can be targeted by drugs already approved by the Food and Drug Administration for treating other cancers, and therefore could be a good target in MDS. The researchers are creating a clinical trial to test these drugs, known as MEK inhibitors and named for the proteins they inhibit to stop cancer.

MDS is a rare blood cancer that has no effective treatments and a poor prognosis. The mutations investigated in this study, however, are also found in other cancers, which extends the possible applications of these findings.

This is the first study to discover that the altered protein created by GNAS is increased in cells with these mutations in MDS, and this results in the activation of processes that would render the cancer cells vulnerable to the MEK inhibitors. The discovery that we can try to use MEK inhibitors in this cancer is also a first, and our findings also support future drug development to target GNAS, identified in this study."

Eirini Papapetrou, MD, PhD, Co-Senior Author, Associate Professor, Oncological Sciences, The Tisch Cancer Institute

Papapetrou led the study with Gene Yeo, PhD, professor at UC San Diego School of Medicine. The researchers generated models of the mutations using stem cells, in order to study them in a physiological genetic context. They then turned the engineered cells into hematopoietic progenitor cells-;which are the relevant cell type in blood cancers-;and performed splicing and RNA binding analyses.

"This work integrates isogenic models of disease with cutting-edge RNA-omics to converge onto a new target for MDS," Yeo said.

These analyses allowed the team to identify high-confidence targets and to identify the driver of the disease. The team showed that MDS cells from the model as well as cells from MDS patients with these mutations were sensitive to treatment with MEK inhibitors.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows cannabis as a genotoxic substance with cancer risks