Researchers identify compounds that tackle fungal infections in a new way

Current medications aren't particularly effective against fungi. The situation is becoming more challenging because these organisms are developing resistance to antimicrobial treatments, just as bacteria are. Now, researchers report in ACS Infectious Diseases that they have identified compounds that tackle these infections in a new way -; by interfering with fungal enzymes required for fatty acid synthesis -; potentially opening the door to better therapies.

Superficial infections by Candida or other types of fungi can cause irritating but relatively minor conditions such as oral thrush and athlete's foot, but invasive infections can result in debilitating and deadly diseases such as cryptococcal meningitis and some hospital-acquired infections. More people are getting these infections because of the growing use of invasive surgery, implanted catheters and immunosuppressive therapy. And some patients, such as those with severe COVID-19 or HIV, are especially susceptible to fungal infections. In addition, treatments can be toxic and often don't work, in part because of increasing resistance. Current targets for these compounds include molecules necessary for making fungal cell walls. As an alternative, Glen. E. Palmer and colleagues began looking for potential therapies that could work through a different mechanism and thereby avoid the drawbacks of these drugs.

The researchers zeroed in on fungal fatty acid (FA) synthase and desaturase enzymes, which are essential for the growth and virulence of human fungal pathogens. It's been difficult to devise a rapid chemical assay to find inhibitors for these enzymes, since it's hard to isolate the enzymes. So the team instead combined genetic engineering with a whole-cell assay to screen thousands of small molecules. Although none of the tested compounds blocked FA synthase activity in Candida albicans cell cultures, 16 inhibited FA desaturase activity. A core acyl hydrazide structure was found to be key to the activity of several of these molecules, which were effective even against drug-resistant strains of several infectious species of fungi, while showing little to no toxicity to mammalian cells. The researchers note that these compounds are promising leads for further development as antifungal agents.

Source:
Journal reference:

DeJarnette, C., et al. (2021) Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infectious Diseases. doi.org/10.1021/acsinfecdis.1c00404.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New technology uses gold nanorods to sterilize surgical implants