Freeze-dried liposomes could be used in potential COVID-19 vaccines

Things that are freeze-dried: Astronaut food. Emergency rations. And, just maybe, some future COVID-19 vaccines.

Freeze-drying is a method for removing water from a product. First, you freeze the item you're trying to dehydrate, causing any water in it to become ice. Then, you remove the ice through a process called sublimation, in which ice turns directly into vapor under low pressure.

In a new study, scientists report that they have successfully freeze-dried a liposome-based liquid vaccine formula that could be developed for potential use in COVID-19 vaccines.

A vaccine that employs the freeze-dried liposomes is still a long way off. But if developed successfully, dehydrated doses could be shipped and stored at room temperature, eliminating logistical problems associated with some of the most popular existing vaccines for the disease.

The findings will be published in Science Advances on Dec. 1, with University at Buffalo biomedical engineering researchers Jonathan Lovell and Moustafa Mabrouk as the senior and first authors, respectively.

"At the time we started this project, the first COVID-19 vaccines were just getting rolled out, and there was a lot of news about how they needed ultra-cold storage, and how that was a huge logistical challenge. Especially in low- and middle-income countries, it may not always be feasible to have that type of refrigeration infrastructure. So we started to look at whether we could make a thermostable COVID-19 vaccine using a liposome-based vaccine platform that we worked on previously," says Lovell, PhD, SUNY Empire Innovation Associate Professor in the Department of Biomedical Engineering in the UB School of Engineering and Applied Sciences and the Jacobs School of Medicine and Biomedical Sciences at UB.

The new study focuses on a liquid injection that consists of ingredients including water; specialized liposomes carrying a synthetically produced version of the spike protein of the COVID-19 virus; and a small amount of sugar, which helps to protect the formula during the freeze-drying process.

The freeze-dried product looks a bit like cotton candy, mint green in color.

Upon dehydration, the formula was stable at elevated temperatures, and we showed that it can withstand room temperatures and even higher temperatures for at least a week. After that, we reconstituted the formula by adding water. When we tested this in mice, it induced effective antibody responses and offered protection against the COVID-19 virus."

Moustafa Mabrouk, UB biomedical engineering PhD student

Co-authors also include Wei-Chiao Huang and Breandan Quinn at UB; Kevin Chiem and Luis Martinez-Sobrido at the Texas Biomedical Research Institute in the U.S.; Edurne Rujas at The Hospital for Sick Children Research Institute in Canada and University of the Basque Country in Spain; Dushyant Jahagirdar and Joaquin Ortega at McGill University in Canada; Meera Surendran Nair, Ruth H. Nissly, Victoria S. Cavener, Nina R. Boyle, Ty A. Sornberger and Suresh V. Kuchipudi at Pennsylvania State University in the U.S.; and Jean-Philippe Julien at The Hospital for Sick Children Research Institute and University of Toronto in Canada.

The research was supported by the U.S. National Institutes of Health, the European Union's Horizon 2020 research and innovation program under a Marie Sklodowska-Curie grant, the CIFAR Azrieli Global Scholar Program, the Ontario Early Researcher Awards program, and the Canada Research Chairs program.

The specialized liposomes examined in the Science Advances study are being researched for potential use in vaccines against multiple diseases. The liposomes were originally developed in Lovell's UB lab and have been licensed by the university to POP Biotechnologies, a startup company that Lovell co-founded. (Huang is also a POP Biotechnologies employee.)

A COVID-19 vaccine candidate that relies on POP Biotechnologies' liposome-based vaccine delivery system is in human trials in South Korea. That vaccine candidate, called EuCorVac-19, is under development by POP Biotechnologies and South Korean biotech company EuBiologics. EuCorVac-19 has slightly different ingredients from the vaccine formula studied in the Science Advances paper.

"We have not tested freeze-drying on the EuCorVac-19 vaccine," Lovell says. "However, I think the data in this new study suggest that, in theory, the EuCorVac-19 formula may be amenable to this type of treatment to make it very thermostable, which would benefit any global deployment."

Source:
Journal reference:

Mabrouk, M.T., et al. (2021) Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. Science Advances. doi.org/10.1126/sciadv.abj1476.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New vaccine shows potential in preventing recurrence of triple-negative breast cancer