Amygdala in children diagnosed with autism begins its accelerated growth during infancy

The amygdala - a brain structure enlarged in two-year-old children diagnosed with autism spectrum disorder (ASD) - begins its accelerated growth between 6 and 12 months of age, suggests a study funded by the National Institutes of Health. The amygdala is involved in processing emotions, such as interpreting facial expressions or feeling afraid when exposed to a threat. The findings indicate that therapies to reduce the symptoms of ASD might have the greatest chance of success if they begin in the first year of life, before the amygdala begins its accelerated growth.

The study included 408 infants, 270 of whom were at higher likelihood of ASD because they had an older sibling with ASD, 109 typically developing infants, and 29 infants with Fragile X syndrome, an inherited form of developmental and intellectual disability. The researchers conducted MRI scans of the children at 6, 12 and 24 months of age. They found that the 58 infants who went on to develop ASD had a normal-sized amygdala at 6 months, but an enlarged amygdala at 12 months and 24 months. Moreover, the faster the rate of amygdala overgrowth, the greater the severity of ASD symptoms at 24 months. The infants with Fragile X syndrome had a distinct pattern of brain growth. They had no differences in amygdala growth but enlargement of another brain structure, the caudate, which was linked to increased repetitive behaviors.

The research team, part of the NIH Autism Centers of Excellence Infant Brain Imaging Study network, was led by Mark Shen, Ph.D., of the University of North Carolina at Chapel Hill and the Infant Brain Imaging Study. The study appears in the American Journal of Psychiatry. Funding was provided by NIH's Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences and National Institute of Mental Health.

The authors suggested that difficulty processing sensory information during infancy may stress the amygdala, leading to its overgrowth.

ASD is a complex developmental disorder that affects how a person behaves, interacts with others, communicates and learns.

Source:
Journal reference:

Shen, M.D., et al. (2022)Subcortical brain development in autism and fragile X syndrome: evidence for dynamic, age-and disorder-specific trajectories in infancy. American Journal of Psychiatry. https://ajp.psychiatryonline.org/doi/abs/10.1176/appi.ajp.21090896

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers a previously unknown genetic link to autism spectrum disorder