Researchers demonstrate the efficiency of T-cell immune response against the Omicron variant

Scholars from HSE University and the RAS Institute of Bioorganic Chemistry have demonstrated the efficiency of T-cell immune response against the Omicron variant of SARS-CoV-2. In approximately 90% of vaccinated Europeans, T-cell immunity was as effective against Omicron as with other variants. The results of the study were published in PeerJ.

The Omicron variant of SARS-CoV-2 caused a new wave of the global pandemic. The new mutations help the virus spread more effectively and avoid antibodies, which is why those who have already had the disease or who have been vaccinated are getting infected more often. At the same time, recent data shows that the severity of the disease in vaccinated patients is significantly lower than in people who have not contacted the virus.

The researchers assume that this can be explained by several factors. First, the Omicron variant is slower at infecting the human cells; second, there is a hypothesis that a lighter course of the disease is related to effective action of T-cell immunity.

To confirm this assumption, a team of researchers from the HSE Faculty of Biology and Biotechnology and the RAS Institute of Bioorganic Chemistry (Stepan Nersisyan, Anton Zhiyanov, Alexey Galatenko, Maxim Shkurnikov, Maria Zakharova, Irina Ishina, Inna Kurbatskaia, Azad Mamedov, Alexander Gabibov, and Alexander Tonevitsky) studied the Omicron variant for mutations that help it avoid the T-cell immune response.

The development of T-cell response starts from the recognition of virus peptides (short fragments of proteins) with the molecules of the human major histocompatibility complex (HLA). The more peptides that are recognized, the faster and more efficient T-cell immunity is. Virus mutations can change such peptides, which is why they can stop being recognized by HLA molecules, and the T-cell response will be less effective.

T-CoV, a bioinformatics algorithm, demonstrated that the Omicron variant avoided none of the HLA molecule variants. But it detected several HLA molecule variants that started to become less effective at recognizing the Omicron's S-protein. An outstanding discovery was the HLA-DRB1*03:01 variant of the molecule. The most important peptide of the virus managed to avoid it. Interestingly, both types of Omicron, BA.1 and BA.2 (also known as 'Stealth'), evaded immune response recognition, though this was achieved by completely different mutations.

The bioinformatics calculations were verified experimentally in a laboratory. The researchers proved that there is no binding between Omicron peptides and the HLA-DRB1*03:01 molecule, which was expressed in vitro.

The researchers emphasize that the initial peptide from the Wuhan basic variant, as well as the Delta peptide, are recognized effectively by this molecule.

The authors emphasize that the detected HLA-DRB1*03:01 variant is present in a big share of the global population: for example, in 8.9% of Europeans.

Source:
Journal reference:

Nersisyan, S., et al. (2022) Alterations in SARS-CoV-2 Omicron and Delta peptides presentation by HLA molecules. PeerJ. doi.org/10.7717/peerj.13354

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Space-grown stem cells show promise for accelerating biotherapies