LMU cell biologists show how interactions between RNA-binding proteins affect synaptic plasticity in neurons

LMU scientists demonstrate that interactions between RNA-binding proteins affect translation and consequently the complexity of neurons.

Neurons constantly adapt to new requirements. This plasticity is the molecular foundation of learning and remembering. At the cellular level, there is a variety of mechanisms for regulating general gene expression. One of the major players is RNA-binding proteins, which recognize messenger molecules (mRNA). In this way, they regulate where and when proteins can be produced inside the neuron. Jointly with other components, the Staufen2 and Argonaute RNA-binding proteins form RNA granules in the cytoplasm.

A team led by LMU cell biologist Prof. Michael Kiebler has now shown for the first time how Staufen and Argonaute proteins interact with each other. The authors of the study published in Nucleic Acid Research were able to demonstrate that the two RNA-binding proteins compete with each other in fulfilling their function. Their results suggest that in this way the two RNA-binding proteins regulate the translation of specific proteins in the dendrite and at the synapse. The scientists hypothesize that these assembly dynamics of RNA granules make an important functional contribution to synaptic plasticity, particularly in neurons.

 

Source:
Journal reference:

Ehses, J., et al. (2022) The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute proteins. Nucleic Acids Research. doi.org/10.1093/nar/gkac487.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease