Researchers discover new chromosomal section effective against diseases in oats

Whether you opt for a crunchy granola bar, mushy bowl of oatmeal, or smooth glass of oat milk, it is clear oats are gaining popularity-;both with consumers and breeders. Oats provide a naturally gluten-free source of nutrition, with proven health benefits for humans and livestock.

However, oats have long produced smaller yield gains compared to other cereal grains. Oat production is primarily affected by diseases such as crown rust and powdery mildew, which occur in most oat-producing countries. Use of fungicides is not economically feasible and may also develop resistance in the pathogen population.

Consequently, developing host resistance is recommended. While over 100 genes effective against crown rust exist, few chromosomal locations, or quantitative trait loci (QTL), are known. According to this article's corresponding author Dr. Belayneh Admassu Yimer of the University of Idaho, the information gap has "limited the utilization of genomic tools in oat breeding and caused difficulty when determining the novelty of newly identified QTL."

Regarding powdery mildew in oats, only 11 effective genes exist, but none prove effective to all powdery mildew isolates. This study identified multiple genes, including novel powdery mildew QTL, that are effective against multiple diseases in one oat line. The same oat populations were screened for crown rust resistance in Aberdeen, Idaho and for powdery mildew at the University of Aberystwyth in the United Kingdom.

This discovery will broaden and diversify resistance sources. "In general, the novel powdery mildew QTL and molecular markers identified in our study will facilitate the development of oat varieties with durable resistance to crown rust and powdery mildew diseases," said Admassu Yimer.

The research of Admassu Yimer and colleagues, in a collaboration that crossed the Atlantic, widens our understanding of host-pathogen interactions at the molecular level, which will positively impact oat genomics, breeding, and pathology, especially regarding disease resistance. This new study fills some of those gaps, which excites the researchers most.

Source:
Journal reference:

Admassu-Yimer, B., et al. (2022) Mapping of Crown Rust (Puccinia coronata f. sp. avenae) Resistance Gene Pc54 and a Novel Quantitative Trait Locus Effective Against Powdery Mildew (Blumeria graminis f. sp. avenae) in the Oat (Avena sativa) Line Pc54. Phytopathology. doi.org/10.1094/PHYTO-10-21-0445-R.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research links COVID-19 vaccines to temporary facial palsy in over 5,000 patients