New study uncovers a likely proteome signature for reductive stress cardiomyopathy

Two years ago, University of Alabama at Birmingham researchers and colleagues reported that reductive stress -; an imbalance in the normal oxidation/reduction, or redox, homeostasis -; caused pathological changes associated with heart failure in a mouse model. This was a follow-up to their 2018 clinical study that found about one in six heart failure patients shows reductive stress.

Now they have extended their description of changes caused by reductive stress to describe changes in the proteome of heart cells in mice, disclosing a likely proteome signature for reductive stress cardiomyopathy. A proteome is the complement of proteins expressed in a cell or tissue.

Using tandem mass spectrometry, researchers led by Rajasekaran Namakkal-Soorappan, Ph.D., associate professor in the UAB Department of Pathology, Division of Molecular and Cellular Pathology, looked at differential protein expression between control hearts and reductive-stress hearts in a mouse model of chronic reductive stress.

They found about 560 proteins were differentially expressed, and 32 proteins were significantly altered -; 20 being upregulated and 12 downregulated. The reductive stress mouse model is caused by a constitutively active NRF2, the redox sensor that maintains redox homeostasis in cells.

Through gene ontology and pathway analysis, the researchers found that the majority of the differentially expressed proteins are involved in stress-related pathways such as antioxidants, NADPH, protein quality control and others. Proteins involved in mitochondrial respiration, lipophagy and cardiac rhythm were dramatically decreased in the reductive stress hearts.

The most significantly changed subset of proteins was in the glutathione family. Glutathione is an antioxidant, active in redox homeostasis, that can exist in a reduced or oxidized form.

Surprisingly, the levels of about half of 104 altered proteins were found not to correlate with levels of their messenger RNAs, the gene message that is read by ribosomes to make a protein. The reason for this asynchrony is not known.

In association with the altered proteome, the reductive stress mice displayed pathological cardiac remodeling. This cardiomyopathy makes it harder for the heart to pump blood, and it can lead to heart failure. The researchers also found post-translational modifications such as oxidation, N-ethylmaleimide, methionine loss and acetylation in the reductive stress hearts.

Under reductive stress, we observed downregulation of several myocardial adaptation or rescue pathways and upregulation of pathophysiological processes, which are associated with reductive stress cardiomyopathy over time. Thus, our results provide a rationale to develop personalized antioxidant therapeutic strategies to avoid reductive stress-mediated proteome alterations in humans."

Rajasekaran Namakkal-Soorappan, Ph.D., associate professor in the UAB Department of Pathology, Division of Molecular and Cellular Pathology

Source:
Journal reference:

Sunny, S., et al. (2022) Tandem Mass Tagging based identification of proteome signatures for reductive stress cardiomyopathy. Frontiers in Cardiovascular Medicine. doi.org/10.3389/fcvm.2022.848045.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mini-protein AKY-1189 delivers targeted radiation to tumor cells