New method accurately analyzes genomics data in cancer archival biopsies

A new paper from University of Helsinki, published today on Nature Communications, suggests a method for accurately analyzing genomics data in cancer archival biopsies. This tool uses machine learning methods to correct damaged DNA and unveil the true mutation processes in tumor samples. This helps to unlock tremendous medicine values in millions of archival cancer samples.

Molecular-based diagnosis helps to match the right patient with the right cancer treatment. Researchers took particular interest in DNA profiling in clinical cancer samples.

-This invaluable source is currently not being used for molecular diagnosis due to the poor DNA quality. Formalin causes severe damage to DNAs, which therefore place an inevitable challenge to analyze cancer genomes in preserved tissues, says lead author Qingli Guo from University of Helsinki.

Analyzing mutation processes in cancer genomes can help early cancer detection, to accurately diagnose cancer, and reveal why some cancers become resistant to treatment. The new method can dramatically accelerate the development of clinical applications that can directly impact future cancer patient care.

The new method predicted more than 90% of developing cancer processes

Lead author Qingli Guo works in close collaboration with scientists from The Institute of Cancer Research (ICR), London, and Queen Mary University of London, developed machine learning methods, named FFPEsig, to unravel exactly how formalin mutates DNA.

-Our results show that normally nearly half of the cancer processes will be missed without noise correction. However, using FFPEsig, more than 90% of them were accurately predicted. says Qingli.

Cancer evolves gradually. Profiling mutational processes in longitudinal samples helps to identify clinical informative predictors and make diagnosis of each tumor stage.

-Our finding enables the characterization of clinically relevant signatures from the preserved tumor biopsies stored at room temperatures for decades. With a deep understanding of how formalin impacts cancer genome, our study opens a huge opportunity to transform the developed signature detection assays using the large cost-effective archival samples.

The researchers pointed out the method currently does not completely remove artifacts that appeared in FFPE samples showing batch effects, and how well the tool performs varies by cancer type, so care must be taken to interpret any findings. We are also interested in further applying their methods in a much broader spectrum of archival samples in the future.

The research was funded by Cancer Research UK, the University of Helsinki, and in part by Academy of Finland. This project is co-led by senior authors Prof. Ville Mustonen (University of Helsinki) and Prof. Trevor Graham (the ICR).

Source:
Journal reference:

Guo, Q., et al. (2022) The mutational signatures of formalin fixation on the human genome. Nature Communications. doi.org/10.1038/s41467-022-32041-5.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Global study reveals shifting trends in ovarian cancer incidence by subtype and region