New discovery changes the understanding of Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) is caused by a genetic mutation and affects one in every 5,000 boys born. Because the affected gene is on the X chromosome, girls are carriers of the mutant gene but develop the disease only very rarely (one in about 50 million).

Children with the condition will need a wheelchair by their teenage years, and most will die in or before they reach their 30s.

Previously, it was widely believed DMD starts in myofibres - cells involved in contraction, which make up the bulk of any muscle. As a result, the search for a treatment had long been focused on these cells and how to deliver therapeutics to them.

New research has revealed the disease begins much earlier in cells destined to become muscle fibers, known as myoblasts.

The study, published in eLife, is part of an ongoing collaboration between scientists at the University of Portsmouth, CNRS, I-STEM, AFM in France and Maj Institute of Pharmacology of the Polish Academy of Sciences

The findings are significant because they change the way we understand the disease. We discovered the functions of myoblasts are severely affected by the absence of dystrophin, and these cells are critically important for normal muscle growth but also regeneration.

Because these myogenic cells malfunction, damaged muscle can't be repaired effectively. And any repaired myofiber will eventually need to be replaced, which will not happen without myogenic cells, so it becomes a vicious circle."

Darek Gorecki, Senior Author, Professor, School of Pharmacy and Biological Sciences, University of Portsmouth

Last year, the team published results of modeling DMD to look at its development, from its initial trigger and first manifestation. They found evidence of abnormalities even before birth in the embryo. Most boys with DMD are diagnosed between two and five years old by which time the damage to their bodies is already significant. This delay in identifying the condition may be preventing therapeutic interventions that could help slow, if not stop, disease progression.

"At the moment we're targeting the late stage of this disease by treating patients in their teens when muscle degeneration has already taken its toll", added Professor Gorecki.

"Instead, if we try to correct cells that are at the beginning of the pathological process we might be able to delay muscle degeneration and extend a patient's lifespan. We can do this by identifying and treating DMD newborns and targeting myogenic cells."

The paper says new technologies could be the key to producing effective therapies for this devastating disease.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Urinary pentosidine reveals muscle and performance health in young men