Research identifies new clue for preventing and treating gliomas

An important new clue for preventing and treating brain tumors known as gliomas has been identified in research led by the Lunenfeld-Tannenbaum Research Institute (LTRI) at Mount Sinai Hospital in Toronto and Mayo Clinic Comprehensive Cancer Center and Mayo Clinic Center for Individualized Medicine. The study, published in the journal Science, provides a rare window into the biological changes behind glioma development.

Researchers found that animal models who carry a change in DNA known as germline alteration rs55705857 developed gliomas much more frequently -; and in half the time -; compared to animal models without the alteration. In addition to brain tumors, the findings are relevant to other cancers and diseases.

While we understand much of the biologic function of germline alterations within genes that code for proteins, we know very little about the biologic function of germline alterations outside of genes that code for proteins. In some way, these germline alterations interact with other mutations in cells to accelerate tumor formation. Based on this new understanding of its mechanism of action, future research may lead to novel and specific therapies that target the rs55705857 alteration."

Robert Jenkins, M.D., Ph.D., Co-Lead Author, Genetics Researcher, Mayo Clinic, Rochester

The study offers new knowledge that may help clinicians determine, pre-surgery, whether a patient has a glioma.

"We expected that rs55705857 would accelerate low-grade glioma development, but we were surprised by the magnitude of that acceleration," says co-lead author Daniel Schramek, Ph.D., a researcher at Lunenfeld-Tannenbaum Research Institute.

There are many alterations, likely thousands, outside of genes associated with the development of cancer and other diseases, but the mechanism of action is only understood for very few, Dr. Schramek says.

This study demonstrates that, with the tools of modern molecular/cell biology, it is possible to decipher much of the mechanism of action of such alterations.

Dr. Jenkins is a Ting Tsung and Wei Fong Chao Professor in Individualized Medicine Research and researcher in Mayo Clinic's Department of Laboratory Medicine and Pathology.

Dr. Schramek is a senior investigator and holds a Kierans & Janigan Research Chair at the LTRI and is an associate professor, Department of Molecular Genetics, Faculty of Medicine, University of Toronto.

Source:
Journal reference:

Yanchus, C., et al. (2022) A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation. Science. doi.org/10.1126/science.abj2890.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research reveals only a few brain regions remain untouched by transition to motherhood