Study examines the severity of the SARS-CoV-2 Omicron BA.2 subvariant

In a recent study that represents the largest to date to examine the severity of the SARS-CoV-2 Omicron BA.2 subvariant (the strain making a re-emergence this fall), a team led by investigators at Massachusetts General Hospital (MGH) determined that the BA.2 subvariant is less severe than the previous Delta variant and less severe to an even greater extent than the original Omicron variant.

This pattern revealed in the JAMA Network Open study suggests that the severity of SARS-Cov-2 may be diminishing.

To provide an accurate assessment of the severity of SARS-Cov-2 variants above and beyond previous studies, the researchers used a method called entropy balancing to account for potential confounding factors such as prior infections, vaccinations, treatments, and comorbidities. The team applied this method to data leveraged from the Mass General Brigham's electronic health record system that's linked to a COVID-19 vaccine registry.

Of 102,315 confirmed COVID-19 cases from March 3, 2020 to June 20, 2022, there were 20,770 labeled as Delta variants, 52,605 labeled as Omicron B.1.1.529 variants (the original Omicron variant), and 28,940 labeled as Omicron BA.2 subvariants.

Mortality rates were 0.7% for Delta, 0.4% for the original Omicron variant, and 0.3% for Omicron BA.2. After adjustments, the odds of death were more than 2-times higher for the Delta and the original Omicron variant compared with Omicron BA.2. Patients with Delta and original Omicron variants were also more likely to need hospitalizations, invasive ventilation, and intensive care admissions.

While the SARS-CoV-2 virus always has the potential to mutate to a more deadly form, when you look at the recent trajectory of Delta, Omicron BA.1, to Omicron BA.2, the virus seems to be getting intrinsically less severe. Hopefully this trend will continue. We can continue to use our analytics system and method to assess many other questions such as which vaccinations have the most impact on preventing long COVID, or whether certain treatments reduce the likelihood of long COVID."

Zachary Strasser, MD, MBA, Lead Author, Academic Physician, Laboratory of Computer Science at MGH and Instructor of Medicine at Harvard Medical School

Additional co-authors include Noah Greifer, PhD, Aboozar Hadavand, PhD, Shawn N. Murphy, MD, PhD, and Hossein Estiri, PhD.

This work was supported in part by the National Institute of Allergy and Infectious Disease and the National Human Genome Research Institute.

Source:
Journal reference:

Strasser, Z.H., et al. (2022) Estimates of SARS-CoV-2 Omicron BA.2 Subvariant Severity in New England. JAMA Network Open. doi.org/10.1001/jamanetworkopen.2022.38354.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 spike protein found lingering in brain regions