Natural material derived from seaweed can help improve outcomes after heart bypass surgery

Researchers are using a natural material derived from seaweed to promote vascular cell growth, prevent blood clots and improve the performance of synthetic vascular grafts used in heart bypass surgery.

Natural material derived from seaweed can help improve outcomes after heart bypass surgery
Photo of the synthetic grafts made by the researchers. Image Credit: University of Waterloo

The new approach, developed and tested at the University of Waterloo, is especially important in cases involving small artificial blood vessels - those less than six millimeters in diameter - which are prone to clots that can develop into full blockages.

"There is a crucial need to develop synthetic vascular graft materials that will increase the rate of long-term functions," said Dr. Evelyn Yim, a chemical engineering professor and University Research Chair who leads the project.

Researchers added a material called fucoidan, which is made from seaweed, to modify synthetic blood vessels. Fucoidan has a structure similar to heparin, a drug used as an anticoagulant.

When applied with a nanotechnology technique known as micropatterning, fucoidan promotes the growth of vascular cells around the inner surface of the graft, significantly reducing the chances of clots forming.

For patients, the potential benefits include fewer complications, better quality of life and less risk of the recurrence of blockages requiring additional drug treatment or surgery.

A functional, off-the-shelf, small-diameter vascular graft will help save lives. What's important is that they will be much longer-lasting and allow blood to flow freely."

Dr. Evelyn Yim, Chemical Engineering Professor, Director of the Regenerative Nanomedicine Lab at Waterlo

Bypass surgery is performed to restore blood flow to areas of the heart when vessels become blocked. Vessels harvested from the patient are the gold standard for grafts, but limited availability often requires the use of artificial vessels.

In addition to heart bypass surgery, grafts are used in medical procedures to treat vascular diseases and restore blood flow to vital organs and tissues, including the brain and legs.

When synthetic graft material doesn't allow vascular cells to grow on the inside of an artery or vessel, there is a high chance of clots, which can develop into full blockages or cause inflammation that restricts blood flow.

Yim has successfully tested the new technique using fucoidan and micropatterning on small animals and plans to expand to large animal testing before advancing to clinical trials.

Several researchers from the Department of Chemical Engineering at Waterloo and the Department of Biomedical Engineering at the Oregon Health and Science University have collaborated on this project.

Source:
Journal reference:

Yao, Y., et al. (2022) Fucoidan and topography modification improved in situ endothelialization on acellular synthetic vascular grafts. Bioactive Materials. doi.org/10.1016/j.bioactmat.2022.10.011.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover why typically normal protein drives prostate cancer