Researchers develop new tool to isolate and analyze rare astrocyte regulators

Rare cell types can have an undue influence on human health. Previous research has suggested that a subset of astrocytes-;star-shaped cells in the brain and spinal cord-;may be responsible for multiple sclerosis (MS), a disease in which the immune system attacks the covering that protects nerves. But finding these rare cells is no easy task-;to pinpoint them, investigators need to identify unique surface markers that can distinguish these culprit cells from others.

Single-cell RNA sequencing can help find them, even in the absence of distinguishing surface marker, but this technique can become extremely expensive. To address this problem, a team led by investigators from Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, developed FIND-seq, which combines nucleic acid cytometry, microfluidics, and droplet sorting to isolate and analyze rare cells of interest based on the expression of mRNA biomarkers detected by digital droplet PCR. Using this method, the team analyzed in great detail a population of astrocytes that drives central nervous system inflammation and neurodegeneration.

When used in combination with other tools, FIND-seq identified signaling pathways controlled by the mineralocorticoid receptor NR3C2 and the nuclear receptor corepressor 2 that play important roles in the development of pathogenic astrocytes in mice and humans. In another study, researchers used FIND-seq to identify mechanisms used by HIV to "hide" in immune cells in patients treated with anti-retroviral therapies.

These findings identify novel targets for therapeutic intervention in neurologic diseases such as MS."

Francisco Quintana, PhD, Corresponding Author, BWH Department of Neurology

The team is working to develop novel small molecules which could be used to target this pathway therapeutically.

Read more about FIND-Seq in a paper in Nature and about its application for the study of HIV in a companion paper published in the same issue.

Source:
Journal reference:

Clark, I.C., et al. (2023) Identification of astrocyte regulators by nucleic acid cytometry. Nature. doi.org/10.1038/s41586-022-05613-0.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals biomarkers that predict disability worsening in multiple sclerosis