New discovery could shift the focus of Parkinson’s disease treatment

Researchers from the University of Queensland have identified that a gene associated with an increased risk of Parkinson's Disease also contributes to a build-up of cell debris in the brain.

Dr Adekunle Bademosi from The Queensland Brain Institute said the discovery could change the focus of Parkinson's Disease treatment.

Our team has found that a Parkinson's Disease-linked mutation in a gene called Endophilin A1 blocks the process by which the body and the brain recycle cell waste."

Dr Adekunle Bademosi, The Queensland Brain Institute

Without the process, called autophagy, toxic debris builds up and neurons die – known hallmarks of Parkinson's Disease.

"We knew we could induce autophagy in cells by starving them of amino acids and the subsequent breakdown of debris tells a protein called EndoA to approach the cell membrane and begin the recycling process," Dr Bademosi said.

"Now we've also seen that regular signals between neurons in the brain starts EndoA-induced autophagy when the electric impulses trigger the release of proteins or neurotransmitters at synapses.

"Unfortunately, when the Endophilin A1 gene is affected in Parkinson's, the protein EndoA becomes insensitive to this trigger at the synapse and the debris that should be thrown out for recycling builds up instead."

Current Parkinson's treatments tend to focus on clearing out the build-ups and replacing what is lost when too many neurons die.

"It may be time to shift the treatment focus to autophagy as the mechanism underlying these disease hallmarks," Dr Bademosi said.

"Exploring the use of compounds that induce or inhibit autophagy could pave the way for new, more effective Parkinson's drugs."

UQ acknowledges the collaborative efforts of researchers in Professor Patrik Verstreken's lab at the Flanders Institute of Biotechnology (VIB) in Belgium.

Source:
Journal reference:

Bademosi, A.T., et al. (2023) EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron. doi.org/10.1016/j.neuron.2023.02.001.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Microglial cells may hold key to Alzheimer's plaque removal