Research identifies western diet-induced microbial and metabolic contributors to liver disease

New research from the University of Missouri School of Medicine has established a link between western diets high in fat and sugar and the development of non-alcoholic fatty liver disease, the leading cause of chronic liver disease.

The research, based in the Roy Blunt NextGen Precision Health Building at MU, has identified the western diet-induced microbial and metabolic contributors to liver disease, advancing our understanding of the gut-liver axis, and in turn the development of dietary and microbial interventions for this global health threat.

We're just beginning to understand how food and gut microbiota interact to produce metabolites that contribute to the development of liver disease. However, the specific bacteria and metabolites, as well as the underlying mechanisms were not well understood until now. This research is unlocking the how and why."

Guangfu Li, PhD, DVM, co-principal investigator, associate professor in the department of surgery and Department of Molecular Microbiology and Immunology

The gut and liver have a close anatomical and functional connection via the portal vein. Unhealthy diets change the gut microbiota, resulting in the production of pathogenic factors that impact the liver. By feeding mice foods high in fat and sugar, the research team discovered that the mice developed a gut bacteria called Blautia producta and a lipid that caused liver inflammation and fibrosis. That, in turn, caused the mice to develop non-alcoholic steatohepatitis or fatty liver disease, with similar features to the human disease.

"Fatty liver disease is a global health epidemic," said Kevin Staveley-O'Carroll, MD, PhD, professor in the department of surgery, one of the lead researchers. "Not only is it becoming the leading cause of liver cancer and cirrhosis, but many patients I see with other cancers have fatty liver disease and don't even know it. Often, this makes it impossible for them to undergo potentially curative surgery for their other cancers."

As part of this study, the researchers tested treating the mice with an antibiotic cocktail administered via drinking water. They found that the antibiotic treatment reduced liver inflammation and lipid accumulation, resulting in a reduction in fatty liver disease. These results suggest that antibiotic-induced changes in the gut microbiota can suppress inflammatory responses and liver fibrosis.

Li, Staveley-O'Carroll and fellow co-principal investigator R. Scott Rector, PhD, Director of NextGen Precision Health Building and Interim Senior Associate Dean for Research -; are part of NextGen Precision Health, an initiative to expand collaboration in personalized health care and the translation of interdisciplinary research for the benefit of society. The team recently received a $1.2 million grant from the National Institutes of Health to fund this ongoing research into the link between gut bacteria and liver disease.

Source:
Journal reference:

Yang, M., et al. (2023). Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol. Nature Communications. doi.org/10.1038/s41467-023-35861-1.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI algorithm accurately detects early-stage metabolic-associated steatotic liver disease