New finding in roundworms upends classical thinking about animal cell differentiation

Researchers have spotted how specific proteins within the chromosomes of roundworms enable their offspring to produce specialized cells generations later, a startling finding that upends classical thinking that hereditary information for cell differentiation is mostly ingrained within DNA and other genetic factors.

The Johns Hopkins University team reports for the first time the mechanisms by which a protein known as histone H3 controls when and how worm embryos produce both highly specific cells and pluripotent cells, cells that can turn certain genes on and off to produce varying kinds of body tissue. The details are published today in Science Advances.

The new research could shed light on how mutations associated with these proteins influence various diseases. In children and young adults, for example, histone H3 is closely associated with various cancers.

These mutations are highly prevalent in different cancers, so understanding their normal role in regulating cell fate and potentially differentiation of tissues may help us understand why some of them are more prevalent in certain diseases. The histones that we're looking at are some of the most mutated proteins in cancer and other diseases."

Ryan J. Gleason, lead author, postdoctoral fellow in biology at Johns Hopkins

Histones are the building blocks of chromatin, the structural support of chromosomes within a cell's nucleus. While histone H3 is particularly abundant in multicellular organisms such as plants and animals, unicellular organisms teem with a nearly identical variant of H3. That's why scientists think the difference in rations of H3 and its variant hold crucial clues in the mystery of why pluripotent cells are so versatile during early development.

The researchers revealed that as C. elegans roundworm embryos grew, increasing H3­­ levels in their systems restricted the potential or "plasticity" of their pluripotent cells. When the team changed the worm's genome to lower the amount of H3, they successfully prolonged the window of time for pluripotency that is normally lost in older embryos.

"As cells differentiate, you start to get a hundredfold histone H3 being expressed at that time period, which coincides with that lineage-specific regulation," Gleason said. "When you lower the amount of H3 during embryogenesis, we were able to change the normal path of development to adopt alternative paths of cell fate."

In pluripotent cells, histones help switch certain genes on and off to commit to specific cell types, be they neurons, muscles, or other tissue. Highly regulated by histones, genes act as a voice that tell cells how to develop. How quiet or loud a gene is determines a cell's fate.

The new findings come from the gene-editing technique CRISPR, which helped the team track the role the two histones played as the worm's offspring developed. CRISPR has made it much easier for scientists in the last decade to study the nuts and bolts of changing genetic material and spot what that does to animal, plant, and microbe traits, Gleason said.

Even though the C. elegans roundworm gives finer insights into how these pluripotent cells evolve, further research is needed to zero in on how histones might also underpin embryogenesis in humans and animals composed of hundreds of types of cells, said Xin Chen, a Johns Hopkins biology professor and co-investigator.

"Even though we are using this small worm to make these discoveries, really this finding should not be specific to one animal," Chen said. "It's hard to imagine the findings are only going to be applicable to one histone or one animal but, of course, more research needs to be done."

The team includes Yanrui Guo of Johns Hopkins, Christopher S. Semancik of Tufts University, Cindy Ow of University of California, San Francisco, and Gitanjali Lakshminarayanan of Dana-Farber Cancer Institute.

Source:
Journal reference:

Gleason, R. J., et al. (2023) Developmentally programmed histone H3 expression regulates cellular plasticity at the parental-to-early embryo transition. Science Advances. doi.org/10.1126/sciadv.adh0411.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New long COVID index highlights five symptom subtypes