Study sheds light on role of antibodies in vaccine protection against COVID-19 variants

Efforts to contain the Covid-19 pandemic have largely focused on vaccine development and deployment. But how exactly do our immune systems respond to COVID-19 vaccines? The major response occurs in one of two ways: the production of antibodies that bind to the receptor-binding domain (RBD) or the production of antibodies that bind to the N-terminal domain (NTD) of the coronavirus viral spike protein. Both play important roles in preventing infection, pathogenesis, and severe disease. However, the antibody repertoire varies widely among individuals. While it has been suggested that this diversity in antibodies influences the ability to protect against mutant strains, its full extent has not been clear.

A research team led by Associate Professor Mayo Yasugi of the Graduate School of Veterinary Science at Osaka Metropolitan University has gained insight into the role of antibodies produced by vaccination in preventing infections, particularly in mutant strains of the coronavirus. The study focused on blood samples taken from volunteers 17 to 28 days post-2nd vaccination, a crucial period when antibody production peaks. By examining the repertoire of antibodies produced by each individual, the researchers showed that antibodies could be categorized into three types, each targeting distinct regions of the viral spike protein, a key component of the vaccine antigen.

Furthermore, the study found that antibodies that primarily target NTD have a lower ability to protect against a delta variant of the coronavirus compared to those primarily targeting RBD. Interestingly, the study also found that the presence or absence of infectivity-enhancing antibodies did not affect the ability of the antibodies to protect against variants.

The results of this study have demonstrated that understanding the nuances of antibody response to vaccination is critical for vaccine development. We believe our findings will provide a foundation for improved vaccine development in the future."

Mayo Yasugi, Associate Professor, Graduate School of Veterinary Science at Osaka Metropolitan University

Their findings were published in Vaccine.

Source:
Journal reference:

Yasugi, M., et al. (2023). Characteristics of epitope dominance pattern and cross-variant neutralisation in 16 SARS-CoV-2 mRNA vaccine sera. Vaccine. doi.org/10.1016/j.vaccine.2023.08.076.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds nirmatrelvir-ritonavir reduces severe COVID-19 and long COVID risks in high-risk patients